CORN AND SOYBEAN BIODIESEL BLENDS AS ALTERNATIVE FUELS FOR DIESEL ENGINES

Author(s):  
M. Shehata ◽  
S. Abdel Razek
Author(s):  
Matthew Tanner ◽  
Peter Stryker ◽  
Indranil Brahma

Petroleum supply and environmental issues have increased interest in renewable low polluting alternative fuels. Published test results generally indicate decreased pollution with similar power output from internal combustion engines burning alternative fuels. More specifically, diesel engines burning biodiesel derived from plant oils and animal fats, not only reduce harmful exhaust emissions, but are renewable and environmentally friendly. A literature review found little previous research with biodiesel in small commercial diesel engines. This paper presents the research that was conducted to study the effect of biodiesel/diesel fuel blends on engine performance and emissions for a Yanmar L100 EE (7.1 kW) engine. This is a standard commercial grade diesel engine used for small equipment such as generators. Independent engine dynamometer and emissions testing were performed to validate the lower emission claims and assess the feasibility of alternative fuels. A testing apparatus capable of making relevant measurements was designed, built and used to perform this study. Fuel blends used included B2, B20, B40, B60, B80, and B100 where the biodiesel component of the blend was a commercial product. An analysis of the fuel showed large percentages of linoleic acid, palmitic acid and stearic acid which is typical for a blend of soybean oil and beef tallow. Test were performed at a constant torque (95 % of the continuously rated value) and variable engine speeds. Test results included calculated values of BMEP, BSFC, thermal efficiency, air mass flow rate, air fuel ratio, corrected NOx, energy lost to exhaust, and heat rejection, and measured values of unburned hydrocarbons, carbon monoxide, and carbon dioxide. Results indicate an increase in thermal efficiency compared to standard diesel and significant reductions of unburned hydrocarbons and carbon monoxide at all engine speeds. Brake specific fuel consumption increased with increasing percent biodiesel consistent with the decreased energy content of blended fuel. Significantly, there were small but consistent reductions in corrected NOx for all blends at all speeds. We posit possible explanations for these results, which are contrary to the published results for larger engines which show an increase in NOx for biodiesel blends.


Author(s):  
Benjamin W. Moscherosch ◽  
Christopher J. Polonowski ◽  
Scott A. Miers ◽  
Jeffrey D. Naber

Recent increases in petroleum fuel costs, CAFE standards, and environmental concerns about CO2 emissions from petroleum based fuels have created an increased opportunity for diesel engines and renewable alternative fuels such as biodiesel. Additionally, the Environmental Protection Agencies Tier II heavy duty and light duty emissions regulations require significant reductions in NOx and diesel particulate matter emissions for diesel engines. As a result, the diesel engine and aftertreatment system is a highly calibrated system that is sensitive to changing fuel characteristics. This study focuses on the impact of soy methyl ester biodiesel blends on combustion performance, carbonaceous soot matter and NOX emissions. Tests were completed with an I4 1.9L, turbocharged, high speed, direct injection diesel engine using commercially available 15 ppm ultra low sulfur diesel, a soy methyl ester B20 (20% biodiesel and 80% ultra low sulfur diesel) biodiesel blend and a pure soy methyl ester biodiesel. Results show a reduction in NOx and carbonaceous soot matter emissions and an increase in brake specific fuel consumption with the use of biodiesel. Further, traditional methodology assumes that diesel fuels with a high cetane number have a reduced ignition delay. However, results from this study show the cetane number is not the only parameter effecting ignition delay.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120177 ◽  
Author(s):  
Matteo Parravicini ◽  
Christophe Barro ◽  
Konstantinos Boulouchos

2017 ◽  
Vol 46 (1) ◽  
pp. 49-53
Author(s):  
R. Bhaskar Reddy ◽  
S. Sunilkumar Reddy

Diesel engines are being used extensively for fuel economy but due to gradual depletion of Petroleum resources and increase in exhaust emissions, there is an urgent need for suitable alternative fuels for the diesel engines. As our country is an agricultural country, if the alternate fuels are produced by our farmers it will be beneficial for the country and the farmers also. In recent studies, researchers studied various vegetable oils like canola oil, alovera oil, soya been oil, flaxseed oil and hone oil etc. Out of all flaxseed oil play an important role as an alternative fuel. But the properties of flaxseed oil are not suitable for the usage in the existing diesel engines without blending with diesel fuel. The performance of the engine depends on the combustion phenomenon and it further depends on the amount of heat retained in the combustion chamber. Hence the present work is planned accordingly to develop an insulated engine by coating the piston with TIO2material. So that more amount of heat will be retained in the combustion chamber which aids the combustion. Further the performance of flaxseedbiodiesel blend namely B10, B20, B30 and B40 are tested and the results are mentioned accordingly.


2022 ◽  
pp. 146808742110667
Author(s):  
Akhilendra Pratap Singh ◽  
Ashutosh Jena ◽  
Avinash Kumar Agarwal

In the last decade, advanced combustion techniques of the low-temperature combustion (LTC) family have attracted researchers because of their excellent emission characteristics; however, combustion control remains the main issue for the LTC modes. The objective of this study was to explore premixed charge compression ignition (PCCI) combustion mode using a double pilot injection (DPI; pilot-pilot-main) strategy to achieve superior combustion control and to tackle the soot-oxides of nitrogen (NOx) trade-off. Experiments were carried out in a single-cylinder research engine fueled with 20% v/v biodiesel blended with mineral diesel (B20) and 40% v/v biodiesel blended with mineral diesel (B40) vis-à-vis baseline mineral diesel. Engine speed and rate of fuel-mass injected were maintained constant at 1500 rpm and 0.6 kg/h mineral diesel equivalent, respectively. Pilot injection timings (at 45° and 35° before top dead center (bTDC)) and fuel quantities were fixed, while three fuel injection pressures (FIPs) and four different start of the main injection (SoMI) timings were investigated in this study. Results showed that multiple pilot injections resulted in a stable PCCI combustion mode, making it suitable for higher engine loads. For all test fuels, advancing SoMI timings led to relatively lesser knocking; however, engine performance characteristics degraded at advanced SoMI timings. B40 exhibited relatively superior engine performance among different test fuels at lower FIP; however, the difference in engine performance was insignificant at higher FIPs. Fuel injection parameters showed a significant effect on emissions, especially on the NOx and particulates. Advancing SoMI timing resulted in 20%–50% lower particulates emissions with a slight NOx increase; however, the differences in emissions at different SoMI timings reduced at higher FIPs. Somewhat higher particulates from biodiesel blends were a critical observation of this study, which was more dominant at advanced SoMI timings. Qualitative correlation between NOx-total particulate mass (TPM) was another critical analysis, which exhibited the relative importance of different fuel injection parameters for other alternative fuels. Overall, B20 at 700 bar FIP and 20° SoMI timing emerged as the most promising proposition with some penalty in CO emission.


Author(s):  
M M Roy

This study investigated the effect of n-heptane and n-decane on exhaust odour in direct injection (DI) diesel engines. The prospect of these alternative fuels to reduce wall adherence and overleaning, major sources of incomplete combustion, as well as odorous emissions has been investigated. The n-heptane was tested as a low boiling point fuel that can improve evaporation as well as wall adherence. However, the odour is a little worse with n-heptane and blends than that of diesel fuel due to overleaning of the mixture. Also, formaldehyde (HCHO) and total hydrocarbon (THC) in the exhaust increase with increasing n-heptane content. The n-decane was tested as a fuel with a high cetane number that can improve ignition delay, which has a direct effect on wall adherence and overleaning. However, with n-decane and blends, the odour rating is about 0.5-1 point lower than for diesel fuel. Moreover, the aldehydes and THC are significantly reduced. This is due to less wall adherence and proper mixture formation.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


2018 ◽  
Vol 1 (10 (91)) ◽  
pp. 16-22 ◽  
Author(s):  
Sviatoslav Kryshtopa ◽  
Myroslav Panchuk ◽  
Bohdan Dolishnii ◽  
Liudmyla Kryshtopa ◽  
Mariia Hnyp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document