scholarly journals Fatigue Characteritics of Medium Carbon Steel after Heat Treatment Using Sand as Cooling Media

2021 ◽  
Vol 8 (2) ◽  
pp. 101
Author(s):  
Sunardi Sunardi ◽  
Randu Randu ◽  
Erny Listijorini ◽  
Iman Saefuloh ◽  
Hamdan Akbar Notonegoro ◽  
...  

Stress concentrations cause many machine element failures. Failure will occur more rapidly if the machine elements obtain repeated and fluctuating loading. For this reason, the material for machine elements must have better fatigue life. There are various attempts made to increase material life and other mechanical properties. In this study, the research sample used is AISI 4140 steel. The samples obtain hardening followed by cooling and tempering. The hardening temperature is 8500C with a holding time of 17 minutes. The cooling media in this research are dry sand, semi-wet sand, and wet sand. Wet measurements based on volumetric ratios. Semi-wet sand with a ratio of sand and water 4: 1, sandy sand 4: 2. The final process is tempering treatment, with a temperature of 2500C. The material fatigue test refers to the JIS Z 2274 Standard. From this study, the heat treatment given can reduce the fatigue life of the material, even though the hardness increases. The higher the cooling rate, the hardness of the material increases, but the fatigue life is low.

2015 ◽  
Vol 1119 ◽  
pp. 575-579 ◽  
Author(s):  
Ibrahim Akhyar ◽  
M. Sayuti

The SAE/ AISI 1045, a type of medium carbon steel, is used most commonly in various structural and element of machines. Sometime, it failed during the in-service, which assumed to be caused by cracking in material as the effect of casting, manufacturing, or heat treatment processes. The current research was developed to find out the effect of hardening and of tempering processes toward hardness, microstructure and cracking. The objectives of the current research are to obtain the effect of cooling rates toward the hardness and cracking and to define a proper cooling media to get a martensite microstructure without cracking of heat resistant products. Results showed that the chemical composition from the spectrometry test confirmed that the specimens were classified as AISI 1045 or JIS S45C. The hardness values properties increased with increase of temperature, except at 1000 °C. The specimens having the hardness property more than that of ASME II standard were not useable due to its brittle.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1988 ◽  
Vol 37 (9) ◽  

Abstract AISI 4140 is a through-hardening chromium-molybdenum medium carbon steel. It is not subject to temper embrittlement. It is recommended for heavy duty service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-18. Producer or source: Alloy steel mills and foundries. Originally published May 1954, revised September 1988.


2021 ◽  
Vol 1 (1) ◽  
pp. 51
Author(s):  
Alfan Ekajati Latief ◽  
Syahril Sayuti ◽  
Rakean Wide Windujati

 ABSTRAKTanto merupakan senjata tajam yang berasal dari Jepang dan merupakan senjata kedua bagi para Samurai di Jepang. Tanto biasa terbuat dari baja karbon menengah hingga baja karbon tinggi yang. Material baja yang digunakan untuk pembuatan Tanto dalam penelitian ini adalah baja AISI seri O1 karena memiliki karakteristik sifat mampu bentuk yang baik serat dapat dikuatkan melalui proses heat treatment. Material baja ini dibuat dengan proses tempa lipat  dengan variasi tempa empat lipatan dan satu lipatan. Pembuatan Tanto dan spesimen uji dilakukan dengan proses tempa lipat secara konvensional menggunakan tungku arang, dengan temperatur tempa rata-rata yaitu ±1200oC, kemudian dilanjutkan dengan quenching pada temperatur ± 850oC, serta tempering pada temperatur ±250oC. Penelitian ditujukan untuk mengetahui pengaruh dari proses tempa empat lipatan dan tempa satu lipatan terhadap sifat mekanik, yaitu kekerasan dan kekuatan impak serta untuk melihat perubahan pada struktur mikro. Hasil pengujian menunjukkan bahwa nilai kekerasan paling tinggi sebesar41HRC yang dimiliki oleh pada raw material, ,sedangkan nilai impak paling tinggi sebesar 224,02 Joule/cm² ayng dicapai oleh material dengan proses tempa empat lipatan, Fasa akhir yang ditemukan pada baja tempa empat lipatan adalah  bainit dan martensit, sementara  perlit dan ferit ditemukan  pada baja satu lipatan, dan lath martensit ditemukan pada pada raw material  Kata kunci: Pisau Tanto, Tempa lipat ,Quenching, Tempering, Uji Impak  ABSTRACT Tanto is a sharp weapon originating  from Japan and is the second weapon for Samurai in Japan. Tanto is usually made of medium carbon steel to high carbon steel. The material which is used in this research is AISI O1 series steel because of its high ability to be formed and also can be made tough through a heat treatment process. This steel is made by folding forge process, with variation in number of folding, which is 4 folds and 1 fold. The making of Tanto and test specimens was carried out by conventional fold forging processes by using a charcoal furnace, with an average forging temperature at ± 1200oC, continue with quenching at ± 850oC, and tempering at ± 250oC. The research is carried out in order to determine the effect of the four-folds forging and one-fold forging to the mechanical behavior, which are hardness and impact strength,  and also to see change in its micro structure. The test that have been carried out shows that the highest hardness value of 41 HRC owned by raw material, while the highest impact value of 224.02 Joules / cm² obtained by material with four layer forging process. Final phases that found in the four-fold forged steel are bainite and martensite, pearlite and ferrite found in one-fold forged steel. and lath martensite in found in the raw material. Keywords: Tanto Knife, Folding Forging, Quenching, Tempering, Testing, Impact Tests


2012 ◽  
Vol 531-532 ◽  
pp. 596-599
Author(s):  
Kai Zhang ◽  
Shang Wen Lu ◽  
Yao Hui Ou ◽  
Xiao Dong Wang ◽  
Ning Zhong

The recently developed “quenching and partitioning” heat treatment and “quenching-partitioning-tempering” heat treatment are novel processing technologies, which are designed for achieving advanced high strength steels (AHSS) with combination of high strength and adequate ductility. In present study, a medium carbon steel containing Nb was subjected to the Q-P-T process, and both the microstructure and mechanical properties was studied. The experimental results show that the Nb-microalloyed steel demonstrates high tensile strength and relatively high elongation. The microstructure of the steel was investigated in terms of scanning electron microscope and transmission electron microscope, and the results indicate that the Q-P-T steel consist of fine martensite laths with dispersive carbide precipitates and the film-like interlath retained austenite. The orientation relationships between martensite and retained austenite is as well-known Kurdjurmov-Sachs relationship and Nishiyama-Wasserman relationship.


2014 ◽  
Vol 909 ◽  
pp. 100-104
Author(s):  
Mohamed A. Gebril ◽  
M.S. Aldlemey ◽  
Farag I. Haider

In this work, the investigations were carried out to study the effect of heat treatment at dual phase of austenite and ferrite on mechanical properties , microstructure and corrosion rate of low alloyed medium carbon steel. The specimens were divided into five groups, first group, specimens were heated to the duel phase region at temperature of 740°C soaked for 30 minutes and quenched in water. The second group, The specimens were heated to 740°C soaked for 30 minutes and quenched in water, then tempered to 480°C soaked for 20 minutes. The third group the specimens were heated to austenizing temperature of 840°C soaked for 30 minutes and quenched in water, then the specimens reheated to the dual phase region at 740°C, soaked for 30 minutes and quenched in water, then the specimens were tempered at temperature 480°C for 30 minutes. The forth group, the specimens were heated to austenizing temperature of 840°C soaked for 30 minutes and quenched in water, this process were repeated again before the specimens were thereafter heated to the dual phase region at temperature of 740°C, soaked for 20 minutes and quenched in water, then the specimens were tempered at temperature 480°C for 20 minutes. The fifth group, the specimens were heated to austenizing temperature of 840°C soaked for 20 minutes and quenched in water, this process were repeated two times again before the specimens were thereafter heated to the dual phase region at temperature of 740°C, soaked for 20 minutes and quenched in water, then the specimens finally tempered at temperature 480°C for 20 minutes. The results proved the hardness increase after heat treatment at first and second group, at third group the highest hardness value was due to formation of martensite and ferrite, but at fourth and fifth groups hardness decreases due to appearance of carbides particles, also corrosion rate usually increases with two phase at microstructure than stable one phase, third group have less corrosion rate than fourth and fifth due to carbides particles formation which lead to more corrosion rate due to three phases presents.


2017 ◽  
Vol 62 (2) ◽  
pp. 1209-1213
Author(s):  
C. Jung ◽  
M.G. Lee ◽  
Y. Jeon

Abstract Many high performance and permanent service parts require suitable material characteristics-high fatigue strength is one of the most important characteristics. For this reason, surface treatment processes are essential to increase the material performance and avoid the use of costly ineffective material. There exist various surface treatment processes for various applications. Each process has advantages and disadvantages and hybridization can solve various problems. The micro-forging process delivers a controlled and uniform surface hardness, but the depth of the forged surface is limited. On the other hand, laser heat treatment can increase the hardness drastically, but the surface may become brittle, which reduces the fatigue life. Laser-assisted micro-forging is a novel hybrid process of laser heat treatment and micro-forging that has the potential to increase the forging depth and relax the stress caused by the high temperature of the forging process. This study examines the effect of laser preheating in the micro-forging of AISI 4140. The processes were varied as follows: no treatment, micro-forging only, and laser-assisted micro-forging. The fatigue strength of the specimens was examined by means of an ultrasonic fatigue tester and then compared. The microstructural changes were investigated with respect to the processes by using scanning electron microscopy. In conclusion, it was confirmed that the laser preheating auxiliary forging affects the fatigue life. It was confirmed that the fatigue life was the mostly increased in 550°C temperature laser preheating micro forging process and the temperature was identified as the most important factor.


Sign in / Sign up

Export Citation Format

Share Document