scholarly journals Antioxidative effect of green tea extract on lipid oxidation of canola oil

1997 ◽  
Author(s):  
Harveen Sethi
Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Sarah Fruehwirth ◽  
Sandra Egger ◽  
Dennis Kurzbach ◽  
Jakob Windisch ◽  
Franz Jirsa ◽  
...  

This study reports the impact of margarine-representative ingredients on its oxidative stability and green tea extract as a promising antioxidant in margarine. Oil-in-water emulsions received much attention regarding factors that influence their oxidative stability, however, water-in-oil emulsions have only been scarcely investigated. Margarine, a widely consumed water-in-oil emulsion, consists of 80–90% fat and is thermally treated when used for baking. As different types of margarine contain varying additives, their impact on the oxidative stability of margarine during processing is of pressing importance. Thus, the influence of different ingredients, such as emulsifiers, antioxidants, citric acid, β-carotene and NaCl on the oxidative stability of margarine, heated at 80 °C for 1 h to accelerate lipid oxidation, was analyzed by the peroxide value and oxidation induction time. We found that monoglycerides influenced lipid oxidation depending on their fatty acyl chain. α-Tocopheryl acetate promoted lipid oxidation, while rosemary and green tea extract led to the opposite. Whereas green tea extract alone showed the most prominent antioxidant effect, combinations of green tea extract with citric acid, β-carotene or NaCl increased lipid oxidation in margarine. Complementary, NMR data suggested that polyphenols in green tea extracts might decrease lipid mobility at the surface of the water droplets, which might lead to chelating of transition metals at the interface and decreasing lipid oxidation.


Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 327 ◽  
Author(s):  
Frederico V. R. Castro ◽  
Mariana A. Andrade ◽  
Ana Sanches Silva ◽  
Maria Fátima Vaz ◽  
Fernanda Vilarinho

Active packaging is becoming progressively more significant as a response to the dynamic changes in current consumer demand and market tendencies. Active packaging is projected to interact directly with the packaged food or with the headspace within the package with the aim of maintaining or extending product quality and shelf-life. Aiming for sustainability, the potential application as biodegradable films of whey protein concentrate (WPC) was evaluated. Aromatic plant’s extracts present high antioxidant properties, representing an alternative for synthetic food additives. The main objective of this study was to verify the effectiveness of an edible WPC film incorporated with a plant-based extract on retarding the lipid oxidation of fresh salmon. Green tea extract (GTE) was chosen to be incorporated into the active film. Fresh salmon was packaged with the control film (WPC) and with active film (WPC–GTE). The oxidation level of non-packaged samples and packaged samples were tested for different storage times. Four methods were applied to evaluate lipid oxidation state of fresh salmon: peroxide value, p-anisidine value, thiobarbituric acid reactive substances (TBARS) assay, and monitoring of hexanal. The results obtained in this study indicate that the whey protein active film was successfully produced, and it was effective in delaying lipid oxidation of fresh salmon samples until the 14th day of storage.


2021 ◽  
Author(s):  
Sandra Egger ◽  
Thomas Flecker ◽  
Miriam Ressler ◽  
Dennis Kurzbach ◽  
Franz Jirsa ◽  
...  

2021 ◽  
Vol 27 ◽  
pp. 100609
Author(s):  
F. Vilarinho ◽  
M. Stanzione ◽  
G.G. Buonocore ◽  
L. Barbosa-Pereira ◽  
R. Sendón ◽  
...  

Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
A Ali ◽  
X Yang ◽  
Q Shi ◽  
J Greenhaw ◽  
WF Salminen

Sign in / Sign up

Export Citation Format

Share Document