Quantifying The Roles Of Single Rain Gauges Within Homogeneous Regions Of A Rainfall Network

2018 ◽  
Author(s):  
Ankit Agarwal
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2489 ◽  
Author(s):  
Luis Angel Espinosa ◽  
Maria Manuela Portela ◽  
João Dehon Pontes Filho ◽  
Ticiana Marinho de Carvalho Studart ◽  
João Filipe Santos ◽  
...  

The paper refers to a study on droughts in a small Portuguese Atlantic island, namely Madeira. The study aimed at addressing the problem of dependent drought events and at developing a copula-based bivariate cumulative distribution function for coupling drought duration and magnitude. The droughts were identified based on the Standardized Precipitation Index (SPI) computed at three and six-month timescales at 41 rain gauges distributed over the island and with rainfall data from January 1937 to December 2016. To remove the spurious and short duration-dependent droughts a moving average filter (MA) was used. The run theory was applied to the smoothed SPI series to extract the drought duration, magnitude, and interarrival time for each drought category. The smoothed series were also used to identify homogeneous regions based on principal components analysis (PCA). The study showed that MA is necessary for an improved probabilistic interpretation of drought analysis in Madeira. It also showed that despite the small area of the island, three distinct regions with different drought temporal patterns can be identified. The copulas approach proved that the return period of droughts events can differ significantly depending on the way the relationship between drought duration and magnitude is accounted for.


1993 ◽  
Vol 28 (11-12) ◽  
pp. 79-85
Author(s):  
Shinichi Kondo

Narrow area radar rain gauges are currently used for measuring rainfall. These radar gauges can measure rainfall accurately in a small area. In sewage plants it is important to predict stormwater. To calculate predicted stormwater the results of rainfall and a prediction of the near future are necessary. Recently urbanization has made the arrival time of flooding to the sewage plant much shorter. This paper deals with system technologies for the near future prediction of radar rain gauge rainfall. The method of prediction of rainfall, calculation of results and other considerations are described.


2021 ◽  
Vol 13 (6) ◽  
pp. 1208
Author(s):  
Linfei Yu ◽  
Guoyong Leng ◽  
Andre Python ◽  
Jian Peng

This study evaluated the performance of the early, late and final runs of IMERG version 06 precipitation products at various spatial and temporal scales in China from 2008 to 2017, against observations from 696 rain gauges. The results suggest that the three IMERG products can well reproduce the spatial patterns of precipitation, but exhibit a gradual decrease in the accuracy from the southeast to the northwest of China. Overall, the three runs show better performances in the eastern humid basins than the western arid basins. Compared to the early and late runs, the final run shows an improvement in the performance of precipitation estimation in terms of correlation coefficient, Kling–Gupta Efficiency and root mean square error at both daily and monthly scales. The three runs show similar daily precipitation detection capability over China. The biases of the three runs show a significantly positive (p < 0.01) correlation with elevation, with higher accuracy observed with an increase in elevation. However, the categorical metrics exhibit low levels of dependency on elevation, except for the probability of detection. Over China and major river basins, the three products underestimate the frequency of no/tiny rain events (P < 0.1 mm/day) but overestimate the frequency of light rain events (0.1 ≤ P < 10 mm/day). The three products converge with ground-based observation with regard to the frequency of rainstorm (P ≥ 50 mm/day) in the southern part of China. The revealed uncertainties associated with the IMERG products suggests that sustaining efforts are needed to improve their retrieval algorithms in the future.


2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Nicola Case ◽  
Alfonso Vitti

Digital images, and in particular satellite images acquired by different sensors, may present defects due to many causes. Since 2013, the Landsat 7 mission has been affected by a well-known issue related to the malfunctioning of the Scan Line Corrector producing very characteristic strips of missing data in the imagery bands. Within the vast and interdisciplinary image reconstruction application field, many works have been presented in the last few decades to tackle the specific Landsat 7 gap-filling problem. This work proposes another contribution in this field presenting an original procedure based on a variational image segmentation model coupled with radiometric analysis to reconstruct damaged images acquired in a multi-temporal scenario, typical in satellite remote sensing. The key idea is to exploit some specific features of the Mumford–Shah variational model for image segmentation in order to ease the detection of homogeneous regions which will then be used to form a set of coherent data necessary for the radiometric reconstruction of damaged regions. Two reconstruction approaches are presented and applied to SLC-off Landsat 7 data. One approach is based on the well-known histogram matching transformation, the other approach is based on eigendecomposition of the bands covariance matrix and on the sampling from Gaussian distributions. The performance of the procedure is assessed by application to artificially damaged images for self-validation testing. Both of the proposed reconstruction approaches had led to remarkable results. An application to very high resolution WorldView-3 data shows how the procedure based on variational segmentation allows an effective reconstruction of images presenting a great level of geometric complexity.


2021 ◽  
Vol 13 (15) ◽  
pp. 2922
Author(s):  
Yang Song ◽  
Patrick D. Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that correction factors applied to rain gauges are effective for improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill for capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill for capturing the geographical distribution of snowfall and precipitation accumulation; therefore, bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


2009 ◽  
Vol 10 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Cláudio Moisés Santos e Silva ◽  
Ralf Gielow ◽  
Saulo Ribeiro de Freitas
Keyword(s):  

2007 ◽  
Vol 30 (1) ◽  
pp. 43-58 ◽  
Author(s):  
George S. Constantinescu ◽  
Witold F. Krajewski ◽  
Celalettin E. Ozdemir ◽  
Talia Tokyay
Keyword(s):  

2017 ◽  
Vol 13 (S336) ◽  
pp. 347-350
Author(s):  
A. M. S. Richards ◽  
M. D. Gray ◽  
A. Baudry ◽  
E. M. L. Humphreys ◽  
S. Etoka ◽  
...  

AbstractOutstanding problems concerning mass-loss from evolved stars include initial wind acceleration and what determines the clumping scale. Reconstructing physical conditions from maser data has been highly uncertain due to the exponential amplification. ALMA and e-MERLIN now provide image cubes for five H2O maser transitions around VY CMa, at spatial resolutions comparable to the size of individual clouds or better, covering excitation states from 204 to 2360 K. We use the model of Gray et al. 2016, to constrain variations of number density and temperature on scales of a few au, an order of magnitude finer than is possible with thermal lines, comparable to individual cloud sizes or locally almost homogeneous regions. We compare results with the models of Decin et al. 2006 and Matsuura et al. 2014 for the circumstellar envelope of VY CMa; in later work this will be extended to other maser sources.


Sign in / Sign up

Export Citation Format

Share Document