The Prediction of Rainfall and the Direction of Rainfall by a Narrow Area Radar Rain Gauge

1993 ◽  
Vol 28 (11-12) ◽  
pp. 79-85
Author(s):  
Shinichi Kondo

Narrow area radar rain gauges are currently used for measuring rainfall. These radar gauges can measure rainfall accurately in a small area. In sewage plants it is important to predict stormwater. To calculate predicted stormwater the results of rainfall and a prediction of the near future are necessary. Recently urbanization has made the arrival time of flooding to the sewage plant much shorter. This paper deals with system technologies for the near future prediction of radar rain gauge rainfall. The method of prediction of rainfall, calculation of results and other considerations are described.

2021 ◽  
Vol 13 (15) ◽  
pp. 2922
Author(s):  
Yang Song ◽  
Patrick D. Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that correction factors applied to rain gauges are effective for improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill for capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill for capturing the geographical distribution of snowfall and precipitation accumulation; therefore, bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


Author(s):  
Haowen Yue ◽  
Mekonnen Gebremichael ◽  
Vahid Nourani

Abstract Reliable weather forecasts are valuable in a number of applications, such as, agriculture, hydropower, and weather-related disease outbreaks. Global weather forecasts are widely used, but detailed evaluation over specific regions is paramount for users and operational centers to enhance the usability of forecasts and improve their accuracy. This study presents evaluation of the Global Forecast System (GFS) medium-range (1 day – 15 day) precipitation forecasts in the nine sub-basins of the Nile basin using NASA’s Integrated Multi-satellitE Retrievals (IMERG) “Final Run” satellite-gauge merged rainfall observations. The GFS products are available at a temporal resolution of 3-6 hours, spatial resolution of 0.25°, and its version-15 products are available since 12 June 2019. GFS forecasts are evaluated at a temporal scale of 1-15 days, spatial scale of 0.25° to all the way to the sub-basin scale, and for a period of one year (15 June 2019 – 15 June 2020). The results show that performance of the 1-day lead daily basin-averaged GFS forecast performance, as measured through the modified Kling-Gupta Efficiency (KGE), is poor (0 < KGE < 0.5) for most of the sub-basins. The factors contributing to the low performance are: (1) large overestimation bias in watersheds located in wet climate regimes in the northern hemispheres (Millennium watershed, Upper Atbara & Setit watershed, and Khashm El Gibra watershed), and (2) lower ability in capturing the temporal dynamics of watershed-averaged rainfall that have smaller watershed areas (Roseires at 14,110 sq. km and Sennar at 13,895 sq. km). GFS has better bias for watersheds located in the dry parts of the northern hemisphere or wet parts of the southern hemisphere, and better ability in capturing the temporal dynamics of watershed-average rainfall for large watershed areas. IMERG Early has better bias than GFS forecast for the Millennium watershed but still comparable and worse bias for the Upper Atbara & Setit, and Khashm El Gibra watersheds. The variation in the performance of the IMERG Early could be partly explained by the number of rain gauges used in the reference IMERG Final product, as 16 rain gauges were used for the Millennium watershed but only one rain gauge over each Upper Atbara & Setit, and Khashm El Gibra watershed. A simple climatological bias-correction of IMERG Early reduces in the bias in IMERG Early over most watersheds, but not all watersheds. We recommend exploring methods to increase the performance of GFS forecasts, including post-processing techniques through the use of both near-real-time and research-version satellite rainfall products.


2021 ◽  
Vol 13 (21) ◽  
pp. 4243
Author(s):  
Mona Morsy ◽  
Ruhollah Taghizadeh-Mehrjardi ◽  
Silas Michaelides ◽  
Thomas Scholten ◽  
Peter Dietrich ◽  
...  

Water depletion is a growing problem in the world’s arid and semi-arid areas, where groundwater is the primary source of fresh water. Accurate climatic data must be obtained to protect municipal water budgets. Unfortunately, the majority of these arid regions have a sparsely distributed number of rain gauges, which reduces the reliability of the spatio-temporal fields generated. The current research proposes a series of measures to address the problem of data scarcity, in particular regarding in-situ measurements of precipitation. Once the issue of improving the network of ground precipitation measurements is settled, this may pave the way for much-needed hydrological research on topics such as the spatiotemporal distribution of precipitation, flash flood prevention, and soil erosion reduction. In this study, a k-means cluster analysis is used to determine new locations for the rain gauge network at the Eastern side of the Gulf of Suez in Sinai. The clustering procedure adopted is based on integrating a digital elevation model obtained from The Shuttle Radar Topography Mission (SRTM 90 × 90 m) and Integrated Multi-Satellite Retrievals for GPM (IMERG) for four rainy events. This procedure enabled the determination of the potential centroids for three different cluster sizes (3, 6, and 9). Subsequently, each number was tested using the Empirical Cumulative Distribution Function (ECDF) in an effort to determine the optimal one. However, all the tested centroids exhibited gaps in covering the whole range of elevations and precipitation of the test site. The nine centroids with the five existing rain gauges were used as a basis to calculate the error kriging. This procedure enabled decreasing the error by increasing the number of the proposed gauges. The resulting points were tested again by ECDF and this confirmed the optimum of thirty-one suggested additional gauges in covering the whole range of elevations and precipitation records at the study site.


2017 ◽  
Author(s):  
Edouard Goudenhoofdt ◽  
Laurent Delobbe ◽  
Patrick Willems

Abstract. In Belgium, only rain gauge time-series have been used so far to study extreme precipitation at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005–2016, independent sliding 1 h and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The extremes are fitted to the exponential distribution using regression in QQ-plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift of convective cells and strong radar signal attenuation. Differences between radar and gauge values are caused by spatial and temporal sampling, gauge rainfall underestimations and radar errors due to the relation between reflectivity and rain rate. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis is performed on radar data within 20 km of the locations of 4 rain gauges with records from 1965 to 2008. Assuming that the extremes are correlated within the region, the fit to the two closest rain gauge data is within the confidence interval of the radar fit, which is small due to the sample size. In Brussels, the extremes on the period 1965–2008 from a rain gauge are significantly lower than the extremes from an automatic gauge and the radar on the period 2005–2016. For 1 h duration, the location parameter varies slightly with topography and the scale parameter exhibits some variations from region to region. The radar-based extreme value analysis can be extended to other durations.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1624 ◽  
Author(s):  
Akbari ◽  
Haghighi ◽  
Aghayi ◽  
Javadian ◽  
Tajrishy ◽  
...  

Water management in arid basins often lacks sufficient hydro-climatological data because, e.g., rain gauges are typically absent at high elevations and inflow to ungauged areas around large closed lakes is difficult to estimate. We sought to improve precipitation and runoff estimation in an arid basin (Lake Urmia, Iran) using methods involving assimilation of satellite-based data. We estimated precipitation using interpolation of rain gauge data by kriging, downscaling the Tropical Rainfall Measuring Mission (TRMM), and cokriging interpolation of in-situ records with Remote Sensing (RS)-based data. Using RS-based data application in estimations gave more precise results, by compensating for lack of data at high elevations. Cokriging interpolation of rain gauges by TRMM and Digitized Elevation Model (DEM) gave 4–9 mm lower Root Mean Square Error (RMSE) in different years compared with kriging. Downscaling TRMM improved its accuracy by 14 mm. Using the most accurate precipitation result, we modeled annual direct runoff with Kennessey and Soil Conservation Service Curve Number (SCS-CN) models. These models use land use, permeability, and slope data. In runoff modeling, Kennessey gave higher accuracy. Calibrating Kennessey reduced the Normalized RMSE (NRMSE) from 1 in the standard model to 0.44. Direct runoff coefficient map by 1 km spatial resolution was generated by calibrated Kennessey. Validation by the closest gauges to the lake gave a NRMSE of 0.41 which approved the accuracy of modeling.


2019 ◽  
Vol 20 (5) ◽  
pp. 821-832 ◽  
Author(s):  
Satya Prakash ◽  
Ashwin Seshadri ◽  
J. Srinivasan ◽  
D. S. Pai

Abstract Rain gauges are considered the most accurate method to estimate rainfall and are used as the “ground truth” for a wide variety of applications. The spatial density of rain gauges varies substantially and hence influences the accuracy of gridded gauge-based rainfall products. The temporal changes in rain gauge density over a region introduce considerable biases in the historical trends in mean rainfall and its extremes. An estimate of uncertainty in gauge-based rainfall estimates associated with the nonuniform layout and placement pattern of the rain gauge network is vital for national decisions and policy planning in India, which considers a rather tight threshold of rainfall anomaly. This study examines uncertainty in the estimation of monthly mean monsoon rainfall due to variations in gauge density across India. Since not all rain gauges provide measurements perpetually, we consider the ensemble uncertainty in spatial average estimation owing to randomly leaving out rain gauges from the estimate. A recently developed theoretical model shows that the uncertainty in the spatially averaged rainfall is directly proportional to the spatial standard deviation and inversely proportional to the square root of the total number of available gauges. On this basis, a new parameter called the “averaging error factor” has been proposed that identifies the regions with large ensemble uncertainties. Comparison of the theoretical model with Monte Carlo simulations at a monthly time scale using rain gauge observations shows good agreement with each other at all-India and subregional scales. The uncertainty in monthly mean rainfall estimates due to omission of rain gauges is largest for northeast India (~4% uncertainty for omission of 10% gauges) and smallest for central India. Estimates of spatial average rainfall should always be accompanied by a measure of uncertainty, and this paper provides such a measure for gauge-based monthly rainfall estimates. This study can be further extended to determine the minimum number of rain gauges necessary for any given region to estimate rainfall at a certain level of uncertainty.


2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 306 ◽  
Author(s):  
Dominique Faure ◽  
Guy Delrieu ◽  
Nicolas Gaussiat

In the French Alps the quality of the radar Quantitative Precipitation Estimation (QPE) is limited by the topography and the vertical structure of precipitation. A previous study realized in all the French Alps, has shown a general bias between values of the national radar QPE composite and the rain gauge measurements: a radar QPE over-estimation at low altitude (+20% at 200 m a.s.l.), and an increasing underestimation at high altitudes (until −40% at 2100 m a.s.l.). This trend has been linked to altitudinal gradients of precipitation observed at ground level. This paper analyzes relative altitudinal gradients of precipitation estimated with rain gauges measurements in 2016 for three massifs around Grenoble, and for different temporal accumulations (yearly, seasonal, monthly, daily). Comparisons of radar and rain gauge accumulations confirm the bias previously observed. The parts of the current radar data processing affecting the bias value are pointed out. The analysis shows a coherency between the relative gradient values estimated at the different temporal accumulations. Vertical profiles of precipitation detected by a research radar installed at the bottom of the valley also show how the wide horizontal variability of precipitation inside the valley can affect the gradient estimation.


RBRH ◽  
2018 ◽  
Vol 23 (0) ◽  
Author(s):  
Stefany Correia de Paula ◽  
Rutineia Tassi ◽  
Daniel Gustavo Allasia Piccilli ◽  
Francisco Lorenzini Neto

ABSTRACT In this study was evaluated the influence of the rainfall monitoring network density and distribution on the result of rainfall-runoff daily simulations of a lumped model (IPH II) considering basins with different drainage scales: Turvo River (1,540 km2), Ijuí River (9,462 km2), Jacuí River (38,700 km2) and Upper Uruguay (61,900 km2). For this purpose, four rain gauge coverage scenarios were developed: (I) 100%; (II) 75%; (III) 50% and (IV) 25% of the rain gauges of the basin. Additionally, a scenario considering the absence of monitoring was evaluated, in which the rainfall used in the modeling was estimated based on the TRMM satellite. Was verified that, in some situations, the modeling produced better results for scenarios with a lower rain gauges density if the available gauges presented better spatial distribution. Comparatively to the simulations performed with the rainfall estimated by the TRMM, the results obtained using rain gauges’ data were better, even in scenarios with low rain gauges density. However, when the poor spatial distribution of the rain gauges was associated with low density, the satellite’s estimation provided better results. Thus, was conclude that spatial distribution of the rain gauge network is important in the rainfall representation and that estimates obtained by the TRMM can be presented as alternatives for basins with a deficient monitoring network.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1006 ◽  
Author(s):  
Xiuna Wang ◽  
Yongjian Ding ◽  
Chuancheng Zhao ◽  
Jian Wang

Continuous and accurate spatiotemporal precipitation data plays an important role in regional climate and hydrology research, particularly in the arid inland regions where rain gauges are sparse and unevenly distributed. The main objective of this study is to evaluate and bias-correct the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall product under complex topographic and climatic conditions over the Hexi region in the northwest arid region of China with the reference of rain gauge observation data during 2009–2015. A series of statistical indicators were adopted to quantitatively evaluate the error of 3B42V7 and its ability in detecting precipitation events. Overall, the 3B42V7 overestimates the precipitation with Bias of 11.16%, and its performance generally becomes better with the increasing of time scale. The agreements between the rain gauge data and 3B42V7 are very low in cold season, and moderate in warm season. The 3B42V7 shows better correlation with rain gauges located in the southern mountainous and central oasis areas than in the northern extreme arid regions, and is more likely to underestimate the precipitation in high-altitude mountainous areas and overestimate the precipitation in low-elevation regions. The distribution of the error on the daily scale is more related to the elevation and rainfall than in monthly and annual scale. The 3B42V7 significantly overestimates the precipitation events, and the overestimation mainly focuses on tiny amounts of rainfall (0–1 mm/d), which is also the range of false alarm concentration. Bias correction for 3B42V7 was carried out based on the deviation of the average monthly precipitation data during 2009–2015. The bias-corrected 3B42V7 was significantly improved compared with the original product. Results suggest that regional assessment and bias correction of 3B42V7 rainfall product are of vital importance and will provide substantive reference for regional hydrological studies.


Sign in / Sign up

Export Citation Format

Share Document