scholarly journals Assessment of Snowfall Accumulation from Satellite and Reanalysis Products Using SNOTEL Observations in Alaska

2021 ◽  
Vol 13 (15) ◽  
pp. 2922
Author(s):  
Yang Song ◽  
Patrick D. Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 snow telemetry (SNOTEL) sites in Alaska were used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018–2019) of a high-resolution radar/rain gauge data (Stage IV) product was also utilized to give insights into the scaling differences between various products. The outcomes were used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range within which other products can be assessed. The time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tended to overestimate snow accumulation in the study area, while the current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that correction factors applied to rain gauges are effective for improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill for capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill for capturing the geographical distribution of snowfall and precipitation accumulation; therefore, bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.

Author(s):  
Yang Song ◽  
Patrick Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 Snow Telemetry (SNOTEL) sites in Alaska are used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018-2019) of the high resolution radar/rain gauge data (Stage IV) product was also utilized to add insights into scaling differences between various products. The outcomes were also used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range in which other products can be assessed. Time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tend to overestimate snow accumulation in the study area, while current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that corrections factors applied to rain gauges are effective in improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill in capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill in capturing the geographical distribution of snowfall and precipitation accumulation, so bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


2020 ◽  
Vol 21 (2) ◽  
pp. 161-182 ◽  
Author(s):  
Francisco J. Tapiador ◽  
Andrés Navarro ◽  
Eduardo García-Ortega ◽  
Andrés Merino ◽  
José Luis Sánchez ◽  
...  

AbstractAfter 5 years in orbit, the Global Precipitation Measurement (GPM) mission has produced enough quality-controlled data to allow the first validation of their precipitation estimates over Spain. High-quality gauge data from the meteorological network of the Spanish Meteorological Agency (AEMET) are used here to validate Integrated Multisatellite Retrievals for GPM (IMERG) level 3 estimates of surface precipitation. While aggregated values compare notably well, some differences are found in specific locations. The research investigates the sources of these discrepancies, which are found to be primarily related to the underestimation of orographic precipitation in the IMERG satellite products, as well as to the number of available gauges in the GPCC gauges used for calibrating IMERG. It is shown that IMERG provides suboptimal performance in poorly instrumented areas but that the estimate improves greatly when at least one rain gauge is available for the calibration process. A main, generally applicable conclusion from this research is that the IMERG satellite-derived estimates of precipitation are more useful (r2 > 0.80) for hydrology than interpolated fields of rain gauge measurements when at least one gauge is available for calibrating the satellite product. If no rain gauges were used, the results are still useful but with decreased mean performance (r2 ≈ 0.65). Such figures, however, are greatly improved if no coastal areas are included in the comparison. Removing them is a minor issue in terms of hydrologic impacts, as most rivers in Spain have their sources far from the coast.


2017 ◽  
Vol 18 (5) ◽  
pp. 1425-1451 ◽  
Author(s):  
Camille Birman ◽  
Fatima Karbou ◽  
Jean-François Mahfouf ◽  
Matthieu Lafaysse ◽  
Yves Durand ◽  
...  

Abstract A one-dimensional variational data assimilation (1DVar) method to retrieve profiles of precipitation in mountainous terrain is described. The method combines observations from the French Alpine region rain gauges and precipitation estimates from weather radars with background information from short-range numerical weather prediction forecasts in an optimal way. The performance of this technique is evaluated using measurements of precipitation and of snow depth during two years (2012/13 and 2013/14). It is shown that the 1DVar model allows an effective assimilation of measurements of different types, including rain gauge and radar-derived precipitation. The use of radar-derived precipitation rates over mountains to force the numerical snowpack model Crocus significantly reduces the bias and standard deviation with respect to independent snow depth observations. The improvement is particularly significant for large rainfall or snowfall events, which are decisive for avalanche hazard forecasting. The use of radar-derived precipitation rates at an hourly time step improves the time series of precipitation analyses and has a positive impact on simulated snow depths.


2010 ◽  
Vol 25 ◽  
pp. 143-153 ◽  
Author(s):  
O. P. Prat ◽  
A. P. Barros

Abstract. A study was performed using the first full year of rain gauge records from a newly deployed network in the Southern Appalachian mountains. This is a region characterized by complex topography with orographic rainfall enhancement up to 300% over small distances (<8 km). Rain gauge observations were used to assess precipitation estimates from the Precipitation Radar (PR) on board of the TRMM satellite, specifically the TRMM PR 2A25 precipitation product. Results show substantial differences between annual records and isolated events (e.g. tropical storm Fay). An overall bias of −27% was found between TRMM PR 2A25 rain rate and rain gauge rain rates for the complete one year of study (−59% for tropical storm Fay). Besides differences observed for concurrent observations by the satellite and the rain gauges, a large number of rainfall events is detected independently by either one of the observing systems alone (rain gauges: 50% of events are missed by TRMM PR; TRMM PR: 20% of events are not detected by the rain gauges), especially for light rainfall conditions (0.1–2mm/h) that account for more than 80% of all the missed satellite events. An exploratory investigation using a microphysical model along with TRMM reflectivity factors at selected heights was conducted to determine the shape of the drop size distribution (DSD) that can be applied to reduce the difference between TRMM estimates and rain gauge observations. The results suggest that the critical DSD parameter is the number concentration of very small drops. For tropical storm Fay an increase of one order of magnitude in the number of small drops is apparently needed to capture the observed rainfall rate regardless of the value of the measured reflectivity. This is consistent with DSD observations that report high concentrations of small and/or midsize drops in the case of tropical storms.


2020 ◽  
Vol 21 (12) ◽  
pp. 2943-2962
Author(s):  
Rebecca Gugerli ◽  
Marco Gabella ◽  
Matthias Huss ◽  
Nadine Salzmann

AbstractThe snow water equivalent (SWE) is a key component for understanding changes in the cryosphere in high mountain regions. Yet, a reliable quantification at a high spatiotemporal resolution remains challenging in such environments. In this study, we investigate the potential of an operational weather radar–rain gauge composite (CombiPrecip) to infer the daily evolution of SWE on seven Swiss glaciers. To this end, we validate cumulative CombiPrecip estimates with glacier-wide manual SWE observations (snow probing, snow pits) obtained around the time of the seasonal peak during four winter seasons (2015–19). CombiPrecip underestimates the end-of-season snow accumulation by factors of 2.2 up to 3.7, depending on the glacier site. These factors are consistent over the four winter seasons. The regional variability can be mainly attributed to the empirical visibility of the Swiss radar network within the Alps. To account for the underestimation, we investigate three approaches to adjust CombiPrecip for the applicability to glacier sites. Thereby, we combine the factor of underestimation with a precipitation-phase parameterization. For further comparison, we apply a rain gauge catch-efficiency function based on wind speed. We validate these approaches with 14 manual point observations of SWE obtained on two glaciers during three winter seasons. All approaches show a similar improvement of CombiPrecip estimates. We conclude that CombiPrecip has great potential to estimate SWE on glaciers at a high temporal resolution, but further investigations are necessary to understand the regional variability of the bias throughout the Swiss Alps.


2018 ◽  
Vol 10 (8) ◽  
pp. 1316 ◽  
Author(s):  
Peng Bai ◽  
Xiaomang Liu

The sparse rain gauge networks over the Tibetan Plateau (TP) cause challenges for hydrological studies and applications. Satellite-based precipitation datasets have the potential to overcome the issues of data scarcity caused by sparse rain gauges. However, large uncertainties usually exist in these precipitation datasets, particularly in complex orographic areas, such as the TP. The accuracy of these precipitation products needs to be evaluated before being practically applied. In this study, five (quasi-)global satellite precipitation products were evaluated in two gauge-sparse river basins on the TP during the period 1998–2012; the evaluated products are CHIRPS, CMORPH, PERSIANN-CDR, TMPA 3B42, and MSWEP. The five precipitation products were first intercompared with each other to identify their consistency in depicting the spatial–temporal distribution of precipitation. Then, the accuracy of these products was validated against precipitation observations from 21 rain gauges using a point-to-pixel method. We also investigated the streamflow simulation capacity of these products via a distributed hydrological model. The results indicated that these precipitation products have similar spatial patterns but significantly different precipitation estimates. A point-to-pixel validation indicated that all products cannot efficiently reproduce the daily precipitation observations, with the median Kling–Gupta efficiency (KGE) in the range of 0.10–0.26. Among the five products, MSWEP has the best consistency with the gauge observations (with a median KGE = 0.26), which is thus recommended as the preferred choice for applications among the five satellite precipitation products. However, as model forcing data, all the precipitation products showed a comparable capacity of streamflow simulations and were all able to accurately reproduce the observed streamflow records. The values of the KGE obtained from these precipitation products exceed 0.83 in the upper Yangtze River (UYA) basin and 0.84 in the upper Yellow River (UYE) basin. Thus, evaluation of precipitation products only focusing on the accuracy of streamflow simulations is less meaningful, which will mask the differences between these products. A further attribution analysis indicated that the influences of the different precipitation inputs on the streamflow simulations were largely offset by the parameter calibration, leading to significantly different evaporation and water storage estimates. Therefore, an efficient hydrological evaluation for precipitation products should focus on both streamflow simulations and the simulations of other hydrological variables, such as evaporation and soil moisture.


2021 ◽  
Vol 13 (15) ◽  
pp. 2931
Author(s):  
Jhonatan Ureña ◽  
Oliver Saavedra ◽  
Takuji Kubota

This study proposes the use of satellite-based precipitation (SBP) products in combination with local rain gauges in Bolivia. Using this approach, the country was divided into three major hydrographic basins: the Altiplano, La Plata, and Amazon. The selected SBP products were Global Satellite Mapping of Precipitation (GSMaP) and Climate Hazards Group Infrared Precipitations with Stations (CHIRPS). The correlation coefficients of SBP were found to be from 0.94 to 0.98 at monthly temporal scale. The applied methodology iterates correction factors, taking advantage of surface measurements from the national rain gauge network; five iterations showed stability in the convergence. Once the improved SBP product was obtained, validation was performed by reducing ten percent the number of rain gauges randomly. After applying the correction factors, the combined products improved their correlation coefficient values by up to 0.99. The validation of the methodology showed that with a combination of products using 90% of the rain gauges, correlation coefficients ranged from 0.98 to 0.99. Among the three basins, the Amazon basin presented the poorest results; this fact may be related to low rain gauge density compared to the other two basins. The validation approach shows that the methodology has an acceptable performance. The database generated in this study, now open to the public, is ready to be used for different hydrological applications such as precipitation time-series analysis, water balance, and water assessment at the sub-basin scale within Bolivia.


2022 ◽  
Vol 14 (2) ◽  
pp. 261
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew B. Watkins ◽  
Suelynn Choy ◽  
Chayn Sun

Satellites offer a way of estimating rainfall away from rain gauges which can be utilised to overcome the limitations imposed by gauge density on traditional rain gauge analyses. In this study, Australian station data along with the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) and the Bureau of Meteorology’s (BOM) Australian Gridded Climate Dataset (AGCD) rainfall analysis are combined to develop an improved satellite-gauge rainfall analysis over Australia that uses the strengths of the respective data sources. We investigated a variety of correction and blending methods with the aim of identifying the optimal blended dataset. The correction methods investigated were linear corrections to totals and anomalies, in addition to quantile-to-quantile matching. The blending methods tested used weights based on the error variance to MSWEP (Multi-Source Weighted Ensemble Product), distance to the closest gauge, and the error from a triple collocation analysis to ERA5 and Soil Moisture to Rain. A trade-off between away-from- and at-station performances was found, meaning there was a complementary nature between specific correction and blending methods. The most high-performance dataset was one corrected linearly to totals and subsequently blended to AGCD using an inverse error variance technique. This dataset demonstrated improved accuracy over its previous version, largely rectifying erroneous patches of excessive rainfall. Its modular use of individual datasets leads to potential applicability in other regions of the world.


2019 ◽  
Author(s):  
Gaoyun Shen ◽  
Nengcheng Chen ◽  
Wei Wang ◽  
Zeqiang Chen

Abstract. Accurate and consistent satellite-based precipitation estimates blended with rain gauge data are important for regional precipitation monitoring and hydrological applications, especially in regions with limited rain gauges. However, existing fusion precipitation estimates often have large uncertainties over mountainous areas with complex topography and sparse rain gauges, and the existing data blending algorithms are very bad at removing the day-by-day random errors. Therefore, the development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is of vital importance for mountainous hydrological applications. This study aims to offer a novel approach for blending daily precipitation gauge data, gridded precipitation data and the Climate Hazards Group Infrared Precipitation (CHIRP, daily, 0.05°) satellite-derived precipitation estimates over the Jinsha River Basin for the period of June–July–August in 2016. This method is named the Wuhan University Satellite and Gauge precipitation Collaborated Correction (WHU-SGCC). The results show that the WHU-SGCC method is effective in precipitation bias adjustments from point to surface, which is evaluated by categorical indices. Moreover, the accuracy of the spatial distribution of the precipitation estimates derived from the WHU-SGCC method is related to the complexity of the topography. The validation also verifies that the proposed approach is effective in the detection of precipitation events that are less than 20 mm. This study indicates that the WHU-SGCC approach is a promising tool to monitor monsoon precipitation over Jinsha River Basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and the historical precipitation characteristics. The daily precipitation estimations at 0.05° resolution over Jinsha River Basin in summer 2016, derived from WHU-SGCC are available at the PANGAEA Data Publisher for Earth &amp; Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.896615).


2011 ◽  
Vol 12 (5) ◽  
pp. 973-988 ◽  
Author(s):  
Jonathan J. Gourley ◽  
Yang Hong ◽  
Zachary L. Flamig ◽  
Jiahu Wang ◽  
Humberto Vergara ◽  
...  

Abstract This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hydrologic model. A high-density Micronet of rain gauges on the 342-km2 Ft. Cobb basin in Oklahoma was used as reference rainfall to calibrate the National Weather Service’s (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) at 4-km/l-h and 0.25°/3-h resolutions. The unadjusted radar product was the overall worst product, while the stage IV radar product with hourly rain gauge adjustment had the best hydrologic skill with a Micronet relative efficiency score of −0.5, only slightly worse than the reference simulation forced by Micronet rainfall. Simulations from TRMM-3B42RT were better than PERSIANN-CCS-RT (a real-time version of PERSIANN-CSS) and equivalent to those from the operational rain gauge network. The high degree of hydrologic skill with TRMM-3B42RT forcing was only achievable when the model was calibrated at TRMM’s 0.25°/3-h resolution, thus highlighting the importance of considering rainfall product resolution during model calibration.


Sign in / Sign up

Export Citation Format

Share Document