scholarly journals BIOREMOVAL OF COPPER(II) VIA HYDROGEN FERMENTATION OF ECOLOGICALLY HAZARDOUS MULTICOMPONENT FOOD WASTE

2020 ◽  
pp. 5-14
Author(s):  
Olesia Havryliuk ◽  
Vira Hovorukha ◽  
Galina Gladka ◽  
Oleksandr Tashyrev

The environmental pollution by copper and the increasing amount of environmentally hazardous organic waste destroy natural ecosystems and have negative and even lethal effect on living organisms. The chemical techniques of metal containing waste detoxification are expensive and hazardous being the advanced problem today. The aim was to justify theoretically and confirm experimentally the possibility of toxic Cu2+ removal by hydrogen producing microbiome (HPM) via dark hydrogen fermentation of solid multicomponent food waste (MFW). Colorimetric and potentiometric methods were used for pH and redox potential measurement. Volumetric and chromatographic methods were applied to control volume and composition of synthesized gas. Fermentation parameters were calculated with the use of mathematical and statistical ones. The high effectiveness of solid waste destruction and Cu2+ removal was shown by spore forming HPM. The MFW were fastly and effectively digested by the microbiome at the absence of Cu2+. The weight of MFW was 90 times decreased (Kd = 90). The maximum concentration of H2 was 35% and biohydrogen yield was 76 L/kg of MFW counting on absolutely dry weight (ADW). The fermentation process was inhibited by Cu2+ in the form of citrate complex. The biohydrogen yield and efficiency of waste destruction were decreased on 41% (45 L/kg of waste) and 37% (Kd = 57) consequently after addition of 50 ppm Cu2+ to the culture liquid of the bioreactor during the beginning of final phase (50 hours) of MFW fermentation. The effect of complete inhibition of H2 synthesis was obtained in the case of adding 100 ppm Cu2+ to the culture liquid sampled from bioreactor during the final phase (80 hours) of fermentation. Nonetheless, the Cu2+ was bioremoved by HPM with high efficiency up to 99.0 % and 99.5% after 5 hours and 30 hours of fermentation where initially the concentrations of Cu2+ were consequently 50 and 100 ppm. The synthesis of gas was not significantly restored after the addition of Cu2+ in both variants of the experiment. Obtained patterns will be used as a basis for the development of novel universal biotechnologies of metal-containing sewage purification with simultaneous destruction of MFW.

2021 ◽  
pp. 36-48
Author(s):  
Vira Hovorukha ◽  
Olesia Havryliuk ◽  
Galyna Gladka ◽  
Bida Iryna ◽  
Yanina Danko ◽  
...  

Fossil carbon-containing fuel is currently one of the most common in industry and economy. The rapid depletion of reserves of this fuel makes it necessary to search for the alternative one. Landfills are a place where methane is spontaneously synthesized due to the decay of organic waste. Controlled and regulated fermentation of the landfill organics can provide biomethane as well as environmental bioremediation. The aim of the work was to study the patterns of methane fermentation of multi component organic waste and optimize the process to increase the efficiency of biomethane synthesis and waste decomposition. Colorimetric and potentiometric methods were used for pH and Eh measurement. Volumetric and chromatographic methods were applied to control volume and composition of synthesized gas. Fermentation parameters were calculated with the use of mathematical and statistical ones. The achievement of high efficiency of methane fermentation of organic waste due to the process regulation was shown. The modeling of unregulated fermentation of organic waste in landfills showed low efficiency of the process. It took 69 days. Weight of waste decreased only 5 times. Hydrogen yield was 5 L/kg of waste. Methane was not synthesized. The regular mass transfer, regulation of the process and waste grinding showed the greatest efficiency. Weight of waste decreased 20 times during only 14 days. Hydrogen yield was 27 L/kg, methane yield was 12 L/kg of waste. Thus, the absence of regulation caused long term decay of waste. The high efficiency is achieved due to regulation of the fermentation process. The results will serve as a basis for the development of industrial biotechnology for the utilization of organic waste to reduce the volume of existing landfills and produce methane energy. This will further allow bioremediation of contaminated areas, obtaining an alternative to fossil fuel biomethane.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
N. A. Fakharulrazi ◽  
◽  
F. Yakub ◽  
M. N. Baba ◽  
L. F. Zhao ◽  
...  

Composting food waste is a delicate procedure that requires specific infrastructure and machinery that can gradually transform the wastes to nutrient-rich manure. Nevertheless, it also desires a constant attention by experts to achieve a quality outcome. Therefore, automatic composting machinery is a promising new idea as modern technology is taking over the world with it high efficiency. The objective of this paper is to build a fully automated composting machine that can help to reduce food waste using a more efficient and environmentally friendly method. This machine has its special features of heating, cooling and grinding which is simple and easy to use for every consumer at just one touch of a button. In addition, it uses a special filter to eliminate unpleasant odor to ensure consumer’s space of mind. The composting process uses node microcontroller (MCU) to run its operation and Internet of Things (IoT) with a developed mobile application to measure the amount of food waste, current process and its moisture content before turning the waste into high nutrient flakes at around 10% of its original volume. It will also notify the consumer when the whole process is done and the final product is ready to use. The produced flakes are good for nurturing soils, use as fertilizer, and renewable source of energy or animal feed. The benefit is to help reduce handling cost of waste at landfill. Excessive logistical energy is required to send food waste to landfill if conventional equipment is applied. This product has a high potential to penetrate the end users who usually cooks at home and also the industrial food manufacturers whether from medium to large which produces a lot of raw waste. Essentially, this machine allows food waste, through implementation of IoT to be converted to usable fertilizer.


2020 ◽  
Vol 66 (No. 3) ◽  
pp. 89-96
Author(s):  
Chibuzo Nwankwo ◽  
Chigozie Francis Okoyeuzu ◽  
Ikpeama Ahamefula

The efficiency of three modified plastic digesters (3.6 m<sup>3</sup> each) using food waste for biogas generation in cooking food was evaluated. The experiment was laid out based on a completely randomised design. A plastic tank was modified as a biodegradation system for food waste digestion to generate a biogas. The biochemical and chemical oxygen demand ranged from 44.58 to 49.62% and 130.42 to 139.20%, respectively, before digestion, but decreased significantly (P &lt; 0.05) after digestion. The pH of the fermenting slurry fluctuated (6.24–6.86) and an average biogas of 0.574 m<sup>3</sup> (505–601 L·day<sup>–1</sup>) per day was generated from the three experimental waste proportions which would be sufficient to cook three meals per day for 3 to 4 people. The methane gas significantly increased (P &lt; 0.05) while the carbon-dioxide significantly decreased (P &lt; 0.05) at the peak of the biogas production. The generated biogas significantly cooked (P &lt; 0.05) faster than kerosene, but not faster than liquefied petroleum gas. The flammable biogas generation and high significant (P &lt;0.05) percentage change in the physico-chemical properties of the wastes after digestion implied high efficiency performance of the digesters modified from the plastic tanks.


Author(s):  
А.В. Сентябов ◽  
А.А. Гаврилов ◽  
М.А. Кривов ◽  
А.А. Дектерев ◽  
М.Н. Притула

Рассматривается ускорение параллельных гидродинамических расчетов на кластерах с CPU- и GPU-узлами. Для тестирования используется собственный CFD-код SigmaFlow, портированный для расчетов на графических ускорителях с помощью технологии CUDA. Алгоритм моделирования течения несжимаемой жидкости основан на SIMPLE-подобной процедуре и дискретизации с помощью метода контрольного объема на неструктурированных сетках из тексаэдральных ячеек. Сравнение скорости расчета показывает высокую производительность графических ускорителей нового поколения в GPGPU-расчетах. Speedup of parallel hydrodynamic calculations on clusters with CPUs and GPUs is considered. The CFD SigmaFlow code developed by the authors and ported for GPU by means of CUDA is used in test calculations. The incompressible flow simulation is based on a SIMPLE-like procedure and on a discretization by the control volume method on unstructured hexahedral meshes. The performance evaluation shows a high efficiency of the new generation of GPUs for GPGPU calculations.


2014 ◽  
Vol 18 (6) ◽  
pp. 153-158 ◽  
Author(s):  
Bum-Suk Kim ◽  
Chang-Nam Kang ◽  
Ji-Hyun Jeong
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5638
Author(s):  
Qiao Wang ◽  
Huan Li ◽  
Kai Feng ◽  
Jianguo Liu

Food waste has a great potential for resource recovery due to its huge yield and high organic content. Oriented fermentation is a promising method with strong application prospects due to high efficiency, strong robustness, and high-value products. Different fermentation types lead to different products, which can be shifted by adjusting fermentation conditions such as inoculum, pH, oxidation-reduction potential (ORP), organic loading rate (OLR), and nutrients. Compared with other types, lactic acid fermentation has the lowest reliance on artificial intervention. Lactic acid and volatile fatty acids are the common products, and high yield and high purity are the main targets of food waste fermentation. In addition to operational parameters, reactors and processes should be paid more attention to for industrial application. Currently, continuously stirred tank reactors and one-stage processes are used principally for scale-up continuous fermentation of food waste. Electro-fermentation and iron-based or carbon-based additives can improve food waste fermentation, but their mechanisms and application need further investigation. After fermentation, the recovery of target products is a key problem due to the lack of green and economic methods. Precipitation, distillation, extraction, adsorption, and membrane separation can be considered, but the recovery step is still the most expensive in the entire treatment chain. It is expected to develop more efficient fermentation processes and recovery strategies based on food waste composition and market demand.


RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 22980-22986 ◽  
Author(s):  
Shujuan Meng ◽  
Yao Yin ◽  
Liu Yu

Remarkably high glucoamylase production from food waste was achieved by optimizing the fermentation conditions using the response surface methodology.


2015 ◽  
Author(s):  
Michael D. Zuteck ◽  
Kevin L. Jackson ◽  
Richard A. Santos ◽  
Ray Chow ◽  
Thomas R. Nordenholz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document