THE POSSIBILITY OF USING THE ENERGY POTENTIAL OF WASTE POOL WATER

Author(s):  
Anna Predajnianska ◽  
Ján Takács

Thermal baths in Slovakia are producers of wastewater, which hides considerable energy potential. The wastewater from the thermal pools has often exceeds the maximum permissible value of the temperature of the wastewater discharged into the water recipient. As a result, there is undesirable damage to the environment, which results in sanctions for the operators of these facilities. Our aim is to present the concept of a single- and double-step heat recuperation system of waste pool water using applications of various types of heat exchangers or heat pumps. The aim of this application is to ensure a suitable temperature to the discharged waste pool water, efficient use of the energy potential of the waste water and saving of primary energy in the form of geothermal water, thus extending the life of the entire system.

2021 ◽  
Vol 1209 (1) ◽  
pp. 012023
Author(s):  
A Predajnianska ◽  
J Takacs

Abstract Thermal baths in Slovakia are producers of wastewater, which hides considerable energy potential. The wastewater from the thermal pools has often exceeds the maximum permissible value of the temperature of the wastewater discharged into the water recipient. As a result, there is undesirable damage to the environment, which results in sanctions for the operators of these facilities. Our aim is to present the concept of a single- and double-step heat recuperation system of waste pool water using applications of various types of heat exchangers or heat pumps. The aim of this application is to ensure a suitable temperature to the discharged waste pool water, efficient use of the energy potential of the waste water and saving of primary energy in the form of geothermal water, thus extending the life of the entire system.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2013 ◽  
Vol 38 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Bartłomiej Kruk

Abstract Research in termoacoustics began with the observation of the heat transfer between gas and solids. Using this interaction the intense sound wave could be applied to create engines and heat pumps. The most important part of thermoacoustic devices is a regenerator, where press of conversion of sound energy into thermal or vice versa takes place. In a heat pump the acoustic wave produces the temperature difference at the two ends of the regenerator. The aim of the paper is to find the influence of the material used for the construction of a regenerator on the properties of a thermoacoustic heat pump. Modern technologies allow us to create new materials with physical properties necessary to increase the temperature gradient on the heat exchangers. The aim of this paper is to create a regenerator which strongly improves the efficiency of the heat pump.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2347
Author(s):  
Elżbieta Hałaj ◽  
Jarosław Kotyza ◽  
Marek Hajto ◽  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
...  

Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of the city is based on coal. The paper presents the conception of using the available renewable sources to integrate them into the city’s heating system, increasing the flexibility of the system and its decentralization. An innovative solution of the use of hybrid, modular heat pumps with power dependent on the needs of customers in a given location and combining them with geothermal waters and photovoltaics is presented. The potential of deep geothermal waters is based on two reservoirs built of carbonate rocks, namely Devonian and Upper Jurassic, which mainly consist of dolomite and limestone. The theoretical potential of water intake equal to the nominal heating capacity of a geothermal installation is estimated at 3.3 and 2.0 MW, respectively. Shallow geothermal energy potential varies within the city, reflecting the complex geological structure of the city. Apart from typical borehole heat exchangers (BHEs), the shallower water levels may represent a significant potential source for both heating and cooling by means of water heat pumps. For the heating network, it has been proposed to use modular heat pumps with hybrid sources, which will allow for the flexible development of the network in places previously unavailable or unprofitable. In the case of balancing production and demand, a photovoltaic installation can be an effective and sufficient source of electricity that will cover the annual electricity demand generated by the heat pump installation, when it is used for both heating and cooling. The alternating demand of facilities for heating and cooling energy, caused by changes in the seasons, suggests potential for using seasonal cold and heat storage.


2018 ◽  
Vol 30 ◽  
pp. 03003 ◽  
Author(s):  
Kaja Niewitecka

Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5119
Author(s):  
Tomasz Sliwa ◽  
Tomasz Kowalski ◽  
Dominik Cekus ◽  
Aneta Sapińska-Śliwa

Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


2020 ◽  
Vol 56 (1-2) ◽  
pp. 54-59
Author(s):  
O. Yakovleva ◽  
O. Ostapenko ◽  
V. Trandafilov

Energy efficiency projects deployment for Ukraine is one of the challenging task today. Ukrainian in­dustry faces very complex environment for project development as well as its deployment within organization nowadays. UA Policy struggle to keep place on the European market to have possibility not only be a part of global policy but to go forward and to bring benefits for macro and micro economy. Fresh breath by integration energy systems within project management into business model of organization let to move closer to hold under control energy efficiency projects realization and avoid financial risks. Environmental policy and energy policy play crucial role for Ukrainian transformation into European pla­yer. Presented proactive plan provides possibilities to deliver the intended economic and environmental benefits of the Ukrainian energy labelling and ecological design directives. These directives are in use or are under development process by increasing the rates of compliance with their energy efficiency requirements. To start from the energy efficiency development process investigation in order to have possibilities to make corrections on the stage of modeling and design can bring benefits and reduce costs for end users. To evaluate the efficiency of heat exchangers, there are over 40 different private integral energy efficiency criteria. Such a number makes the estimation of heat exchangers not always objective and sufficiently definite, which does not allow to algorithmize the task of determining the efficiency of heat exchangers. On the foundation of the system element representation for the heat exchange network, the concepts of energy potential and energy efficiency of energy exchange are proposed. The obtained equations allow us to determine the efficiency of energy exchange not only for an element of the heat exchange network, but also for a complex system as a whole with a minimum of information about the system


Sign in / Sign up

Export Citation Format

Share Document