scholarly journals Behavior of Sheet Pile Quay Wall Stabilized by Sea-Side Ground Improvement in Dynamic Centrifuge Tests

2009 ◽  
Vol 49 (2) ◽  
pp. 193-206 ◽  
Author(s):  
M. Ruhul Amin Khan ◽  
Kimitoshi Hayano ◽  
Masaki Kitazume
Author(s):  
Yuji SUGIMURA ◽  
Satoshi MATSUMUR ◽  
Takaaki MIZUTANI ◽  
Yoshiyuki MORIKAWA ◽  
Haruhiko SINOZAKI ◽  
...  

2018 ◽  
Vol 74 (2) ◽  
pp. I_240-I_245
Author(s):  
Kimiyasu SAEKI ◽  
Hidemasa SATO ◽  
Teruhisa FUJII ◽  
Kunitomo ASAKURA ◽  
Masayuki FUDO ◽  
...  

2020 ◽  
Author(s):  
Moon-Gyo Lee ◽  
Hyung-Ik Cho ◽  
Chang-Guk Sun ◽  
Han-Saem Kim

<p>The pseudo-static approach has been conventionally applied for the design of gravity type quay walls. In this method, the seismic coefficient (<em>k<sub>h</sub></em>), expressed in terms of acceleration due to gravity, is used to convert the real dynamic behavior to an equivalent pseudo-static inertial force for seismic analysis and design. The existing <em>k<sub>h</sub></em> is simply defined as the expected peak ground acceleration (<em>PGA</em>) of the ground divided by the gravitational acceleration (<em>g</em>), which does not sufficiently reflect the real dynamic behavior. In order to improve the <em>k<sub>h</sub></em> definition, a number of studies have been performed for reducing the differences between pseudo-static and true dynamic behavior. In this regard, questions regarding the need for considering the effect of frequency characteristics of input earthquake, natural period of the backfill soil and the subsoil underneath the wall, and wall height on the deformation of quay wall crown (<em>D<sub>h</sub></em>) have been explored. In this study, dynamic centrifuge tests were conducted using the gravity type quay wall models designed with a <em>k<sub>h</sub></em> value of 0.13 to assess the behavior of the model wall during earthquakes. Three different variables: input earthquake motions, wall heights and the thickness of subsoil underneath the wall were considered, and the test results were compared and analyzed to assess the validity of the conventional <em>k<sub>h</sub></em> concept under these conditions. In addition, some improvements that should be considered for the future revision of the <em>k<sub>h</sub></em> definition are discussed.</p>


2015 ◽  
Vol 744-746 ◽  
pp. 1175-1179 ◽  
Author(s):  
Peng Liu ◽  
Hong Wang ◽  
Chao Zhu

The impact process of 50000t ship and steel sheet pile bulkhead is simulated by finite element software ANSYS/LS-DYNA. This article acquires the impact force-time curve, equivalent force-time curve of steel sheet pile and the pressure-time curve of breast wall. Comparing the impact force of numerical simulation with the result of ship-bridge collision specifications, and general rules and characteristics are obtained. At the same time, put forward some measures to prevent the damage of wharf structure under the ship of large velocity impact, which provide theoretical references during the design, maintenance, and transformation of similar wharf.


2012 ◽  
Vol 06 (04) ◽  
pp. 1250017 ◽  
Author(s):  
HELEN MITRANI ◽  
S. P. G. MADABHUSHI

Many typical ground improvement techniques that are used for liquefaction remediation, such as in situ densification, are not appropriate for application under existing buildings and more novel techniques are required. This paper describes centrifuge tests investigating the performance of rigid containment walls as a liquefaction remediation method. A simple frame structure, founded on a deep layer of loose, liquefiable sand was tested under earthquake shaking. Centrifuge tests were then carried out with containment walls around the base of the structure, extending through the full depth of the liquefiable layer and also partial depth. It is found that rigid containment walls can be very effective in reducing structural settlements primarily by preventing lateral movement of the foundation sand but the impermeability of the walls may also be important. Improvements in structural settlement are observed even when the walls do not extend through the full depth of the liquefiable layer, if the depth of the walls is greater than the depth of the free field liquefaction. In addition, it is found that the accelerations of the structure are not increased, provided there is no rigid, structural connection between the structure and the containment walls.


Sign in / Sign up

Export Citation Format

Share Document