Experimental analysis of crack evolution in concrete by the acoustic emission technique

Author(s):  
J. Saliba ◽  
A. Loukili ◽  
J.P. Regoin ◽  
D. Grégoire ◽  
L. Verdon ◽  
...  

The fracture process zone (FPZ) was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD) control. Crack growth was monitored by applying the acoustic emission (AE) technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Zhoudao Lu

Determination of the residual crack extension resistance curves (KR-curves) associated with cohesive force distribution on fictitious crack zone of complete fracture process is implemented in present research. The cohesive force distributes according to bilinear softening traction-separation law proposed by Petersson. Totally ten temperatures varying from 20°C to 600°C and the specimen size of230×200×200 mm with initial-notch depth ratios 0.4 are considered. The load-crack mouth opening displacement curves (P-CMOD) of postfire specimens are obtained by wedge-splitting method from which the stress intensity factor curves (K-curves) are calculated. In each temperature, with the distribution of cohesive force along the fracture process zone, the residual fracture toughnessKR(Δa) increases with increasing crack lengthΔa, whereas theKR-curves decrease with increasing temperaturesTmfor the thermal damage induced. The stability analysis on crack propagation demonstrates that when the residualKR-curve is higher thanK-curve, the crack propagates steadily; otherwise, the crack propagates unsteadily.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950105
Author(s):  
XIANGQIAN FAN ◽  
JUEDING LIU

To optimize the strengthening method using the fiber reinforced polymer (FRP) for the reinforcement of the concrete structure with cracks, the three-point bending test was conducted on the concrete beams wrapped with different layers of FRP materials. The strain gauges were pasted on the surface of the specimens to measure the initial cracking load. The crack mouth opening displacement (CMOD) was utilized to test the load–crack mouth opening displacement curve. According to the improved calculation formula of the fracture toughness, the critical effect crack length [Formula: see text], initiation fracture toughness [Formula: see text] and instability fracture toughness [Formula: see text] of specimens were calculated. The test results showed that, under the same initial crack depth, the peak load of FRP reinforced concrete decreases with the increase of FRP pasting layer. When there was one layer wrapped over the specimen, the instability toughness of the specimen reached the maximum value and the crack resistance was the best. Based on acoustic emission testing method, the acoustic emission parameters of the above-mentioned concrete during fracture process were identified and collected. The optimal layer of the FRP reinforced concrete with cracks was analyzed from the acoustic emission method.


2020 ◽  
Vol 309 ◽  
pp. 73-79
Author(s):  
Hana Šimonová ◽  
Ivana Kumpová ◽  
Iva Rozsypalová ◽  
Patrik Bayer ◽  
Petr Frantik ◽  
...  

This paper deals with selected alkali-activated aluminosilicate composites with a ceramic precursor in terms of their characterization using mechanical fracture parameters. Three composites were studied. They were manufactured using brick powder as a precursor and an alkaline activator with a dimensionless silicate modulus of Ms = 1.0, 1.2 and 1.4. The test specimens were nominally 40 × 40 × 160 mm in size and had a central edge notch with a depth of 1/3 of the specimen’s height. At least 6 specimens made of each composite were tested at the age of 28 days. The specimens were subjected to three-point bending tests, during which diagrams showing force vs. deflection at midspan (F–d diagrams) and force vs. crack mouth opening displacement (F–CMOD diagrams) were recorded. After the processing of these diagrams, values were determined for the static modulus of elasticity, effective fracture toughness (including its initiation component from the analysis of the first part of the F–CMOD diagrams), effective toughness and specific fracture energy using the effective crack model, Work-of-Fracture method, and Double-K fracture model. After the fracture experiments had been performed, compressive strength values were determined for informational purposes from one part of each specimen that remained after testing. In order to obtain visual information about the internal structure of the composites before and after the mechanical testing, the selected specimen was examined via X-ray microtomography. Tomographic measurements and image processing were performed for the qualitative and quantitative evaluation of internal structural changes with an emphasis on the calculation of porosimetry parameters as well as the visualization of the fracture process zone. The fractal dimension of the fracture surface and fracture process zone was determined. The porosity and microstructure images of selected samples taken from specimens were assessed.


2017 ◽  
Vol 744 ◽  
pp. 92-96
Author(s):  
Hong Niao Chen ◽  
Jia Jian Chen ◽  
Ray Kai Leung Su

In order to study crack evolution in concrete, Electronic Speckle Pattern Interferometry (ESPI) technique was applied to measure full-field displacement of concrete beam subjected to three-point bending. Basic principles of ESPI technique were introduced. Mid-span deflection and crack mouth opening displacement were measured by linear variable differential transformers (LVDTs) and clip gauge, respectively. Typical load-displacement curves measured by different methods were compared and analyzed. Analysis results indicated that ESPI results were in good agreement with that measured by LVDT (clip gauge), verifying the validity and accuracy of ESPI measurement. From displacement contours, crack evolution including its initiation and propagation was observed. Furthermore, strain profiles near the crack at different loading levels were determined. Strain profile was nearly linear before crack initiation and became nonlinear with crack growth.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5755
Author(s):  
Parinaz Belalpour Dastjerdi ◽  
Eric N. Landis

In this study, the fracture mechanics of eastern spruce were characterized in relation to end-grain orientation. Compact tension-type specimens with small pre-formed cracks were prepared such that grain angle varied relative to the load axis. Specimens were loaded under crack mouth opening displacement (CMOD) control as to maintain stable crack growth. Specimen fracture was characterized using both R-curve and bulk fracture energy approaches. The results showed that under a RT grain orientation, as well as grain deviations up to about 40∘, cracks will follow a path of least resistance in an earlywood region. As the grain angle exceeds 40∘, the crack will initially move macroscopically in the direction of maximum strain energy release rate, which extends in the direction of the pre-crack, but locally meanders through earlywood and latewood regions before settling once again in an earlywood region. At 45∘, however, the macroscopic crack takes a turn and follows a straight radial path. The results further show that RT fracture is macroscopically stable, while TR fracture is unstable. None of the end-grain fracture orientations showed rising R-curve behavior, suggesting that there is not a traditional fracture process zone in this orientation.


2014 ◽  
Vol 897 ◽  
pp. 149-152 ◽  
Author(s):  
Michal Matysík ◽  
Libor Topolář ◽  
Petr Daněk ◽  
Tomáš Vymazal ◽  
Iveta Plšková

Acoustic emission is an experimental tool well suited for monitoring fracture processes. The paper presents experiment focused on analysing acoustic emission signals captured during three-point bending fracture test of specimens of concrete. Quantitative acoustic emission techniques were used to measure micro fracture properties. For three different concrete mixtures typical acoustic emission patterns were identified in the acoustic emission records to further describe the under-the-stress behaviour and failure development. If we have a better understanding of the relationships between micro structural events and macroscopic behaviour we can better formulate predictive models for large-scale structural performance and reliability. An understanding of microstructureperformance relationships is the key to true understanding of material behaviours. Three-point bending fracture tests were conducted on these specimens and load versus crack mouth opening displacement (Load-CMOD) diagrams were recorded during the testing.


2012 ◽  
Vol 626 ◽  
pp. 147-151 ◽  
Author(s):  
Siti Ramziah Basri ◽  
Norazura Muhamad Bunnori ◽  
Sakhiah Abdul Kudus ◽  
Shahidan Shahiron ◽  
Mohd Nazli Md. Jamil ◽  
...  

This paper summarized the recent development within the application of acoustic emission technique in the formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens. AE technique is a non destructive technique which is a useful tool to study the energy released during the different failure mechanisms in different types of materials and fracture process is one of the failure mechanisms in concrete. Most of the researchers were applied three point bending test on plain concrete in order to determine the facture process zone of the concrete and some of them were used numerical modeling to verify their results. The results between AE data and experimental in different parameters such as specimens size and aggregate size are normally compared. As a conclusion, AE technique is a very useful tool to determine the fracture process zone in concrete.


Author(s):  
Douglas A. Scarth ◽  
Joanna Wu ◽  
Ted Smith ◽  
Dennis M. Kawa

Delayed Hydride Cracking (DHC) in Zr-2.5 Nb alloy material is of interest to the CANDU (Canada Deuterium Uranium) industry in the context of the potential to initiate DHC at a blunt flaw in a CANDU reactor pressure tube. The material is susceptible to DHC when there is diffusion of hydrogen atoms to the flaw, precipitation of hydride platelets, and development of a hydrided region at the flaw tip. The hydrided region can then fracture to the extent that a crack forms, and is able to grow by the DHC crack growth mechanism. An engineering process-zone model for evaluation of DHC initiation at a blunt flaw that takes into account flaw geometry has been developed. The model is based on representing the stress relaxation due to hydride formation, and crack initiation, by an infinitesimally thin process zone. Application of the engineering process-zone model requires calculation of the stress intensity factor, and the crack-mouth opening displacement, for a fictitious crack at the tip of a blunt flaw. In the current model, calculation of these quantities is based on a cubic polynomial fit to represent the stress distribution ahead of the blunt flaw tip, where the stress distribution is generally calculated by finite element analysis. However, the cubic polynomial is not always an optimum fit to the stress distribution for very small root radius flaws, due to the large stress gradients near the flaw tip. Application of the weight function method will enable a more accurate representation of the flaw-tip stress distribution for the calculation of the stress intensity factor and the crack-mouth opening displacement. Weight functions for a crack at the tip of a blunt flaw in a thin wall cylinder have been developed for implementation into the engineering process-zone model. These weight functions are applicable to a wide range of blunt flaw depths and root radii, as well as a wide range of flaw-tip crack depths. The development and verification of the weight functions is described in this paper. The verification calculations are in reasonable agreement with alternate solutions, and have confirmed that the weight functions have reasonable accuracy for engineering applications of the process-zone methodology.


2017 ◽  
Vol 259 ◽  
pp. 58-63
Author(s):  
Hana Šimonová ◽  
Libor Topolář ◽  
Ivana Havlíková ◽  
Michal Matysík ◽  
Petr Daněk ◽  
...  

In this paper, authors concentrate attention on crack initiation and acoustic emission (AE) parameters obtained from records of three-point bending fracture tests on eight sets of concrete specimens with initial stress concentrator at the age of 28 days. Resistance to stable and unstable crack propagation was quantified via evaluation of load vs crack mouth opening displacement diagrams using Double-K fracture model. The AE technique was used to monitor damage process taking place during testing in specimens.


Author(s):  
Biswajit Pal ◽  
Ananth Ramaswamy

<p>In this study, meso-scale (mm-cm scale) modelling approach is adopted to simulate the behaviour of plain concrete beam under 3-point bending. At meso-level, concrete is assumed as either a two- phase or a three-phase composite material (mortar, aggregate and/or interfacial transition zone- ITZ). In this tudy, first the aggregates are generated and placed in the concrete domain with prescribed randomness. The remaining space in the concrete domain is then filled with mortar. However, in three phase model, ITZ of finite thickness surrounding the aggregates is assumed to exist. In this study, three geometrically similar beam specimens with and without notch have been considered. The simulated load-crack mouth opening displacement (CMOD) is then validated with the corresponding experimental data. A convergence study of peak load with different specimens in terms of randomness in aggregates generation and placement has been studied.</p>


Sign in / Sign up

Export Citation Format

Share Document