Soil parameters and bioclimatic characteristics affecting essential oil composition of leaves of Pistacia lentiscus L. from València (Spain)

2021 ◽  
Vol 11 ◽  
Author(s):  
Josep Vicent Llinares Palacios ◽  
Juan A. Llorens-Molina ◽  
Jaume Mulet ◽  
Sandra Vacas

The variability of the soils found in an area together with the diversity of the bioclimatic parameters will affect the chemical profile of plant species, in our case <em>Pistacia lentiscus</em> L. The aim of this work is to analyse the bioclimatic characteristics and soil parameters affecting the essential oil (EO) composition of the leaves of the <em>Pistacia lentiscus</em> L. growing in València (Spain). The EO compositions of dried leaves of <em>Pistacia lentiscus</em> L. from five sampling sites with noticeable differences in soil and climate features were analysed by GC(MS) and GD(FID). The main bioclimatic and soil parameters were also determined in order to relate them to oil composition. a-pinene (2.8-39.2%), myrcene (0.6-59.3%), b-phellandrene (0.0-42.8%), germacrene-D (3.9-20.4%) and terpinen-4-ol (0.2-19.0%) were found to be the major compounds showing a high variability. The five sampling sites presented well-defined bioclimatic and edaphic characteristics that could be related to specific EO profiles. The results suggested that the EO composition of <em>P. lentiscus</em> L. depends more on the edaphic factors interacting with bioclimate conditions than on the geographical origin itself. Some general trends could be established based on the results: the Calcaric Arenosol (Saler) with a high evapotranspiration index was associated with a high sesquiterpenic fraction, (germacrene-D and b-caryophyllene, mainly). The Luvisol (Borrell and L’Ull), with high amounts of a + b-pinene, were found to be related to sub-humid bioclimatic conditions and clayey and fertile soils (high CEC and OM levels). This last requirement was also observed to be related to the myrcene content, but with drier climatic conditions and calcareous soils (Haplic Calcisol) with high level of carbonates and active lime (Lliria). The rest of hydrocarbon monoterpene and oxygenated monoterpene (terpinen-4-ol, mainly) fractions could be related to a dry climate and non-calcareous and low fertility soils (Eutric Regosol, Segart). Given the most suitable composition related to specific and useful biological activities, new research of controlled environmental factors (soil features and bioclimatic conditions) should be conducted in order to define the best conditions to manage industrial crops of <em>P. lentiscus </em>L<em>.</em>

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kamel Msaada ◽  
Nidhal Salem ◽  
Olfa Bachrouch ◽  
Slim Bousselmi ◽  
Sonia Tammar ◽  
...  

The aim of this study was to determine the chemical variability of wormwood extracts as affected by the growing region. Antioxidant and antimicrobial activities were also investigated. The essential oil composition variability ofA. absinthiumL. aerial parts collected from four different Tunisian regions was assessed by gas chromatography (GC/FID) and by gas chromatography mass spectrometry (GC/MS). In addition, total polyphenols, flavonoids, and condensed tannins as well as antioxidant, antibacterial, and antifungal activities of methanolic extract and essential oils were undertaken. Chromatographic analysis of wormwood essential oils showed the predominance of monoterpene hydrocarbons represented mainly by chamazulene. RP-HPLC analysis of wormwood methanolic extract revealed the predominance of phenolic acids. Antiradical activity was region-dependant and the methanolic extract of Bou Salem region has the strongest activity (CI50=9.38±0.82 µg/mL). Concerning the reducing power, the methanolic extract of Bou Salem, Jérissa, and Boukornine regions was more active than the positive control. Obtained results of antimicrobial activities showed that wormwood essential oil is endowed with important antibacterial activity which was strongly related to the organoleptic quality of oil which appeared strongly region-dependant.A. absinthiumL. EOs investigated are quite interesting from a pharmaceutical standpoint because of their biological activities.


2007 ◽  
Vol 2 (1) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
William N. Setzer ◽  
William A. Haber

The leaf essential oils of five species of Beilschmiedia from Monteverde, Costa Rica (Beilschmiedia alloiophylla, B. brenesii, B. costaricensis, B. tilaranensis, and an undescribed Beilschmiedia species “chancho blanco”) have been obtained by hydrodistillation and analyzed by GC-MS in order to discern the differences and similarities between the volatile chemical compositions of these species. The principal constituents of B. alloiophylla leaf oil were germacrene D (18.9%), cis- and trans-β-ocimene (18.8% and 9.3%, respectively), α-pinene (11.8%), and bicyclogermacrene (9.1%). The leaf oil of B. brenesii was composed largely of the sesquiterpenes germacrene D (19.3%), β-caryophyllene (13.4%), α-copaene (9.0%), α-humulene (8.1%), and δ-cadinene (5.8%), and the carbonyl compounds 2-undecanone (12.8%), trans-2-hexenal (8.8%), and 2-tridecanone (3.8%). α-Bisabolol (72.1%) dominated the leaf oil of B. costaricensis, while B. tilaranensis had germacrene D (54.9%), β-caryophyllene (14.8%), and δ-cadinene (5.1%) as major components. Beilschmiedia “chancho blanco” leaf oil was composed largely of β-caryophyllene (16.6%), bicyclogermacrene (14.1%), and α-pinene (12.1%).


2010 ◽  
Vol 5 (5) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Jesús Palá-Paúl ◽  
Jaime Usano-Alemany ◽  
Joseph J. Brophy ◽  
María J. Pérez-Alonso ◽  
Ana-Cristina Soria

The essential oils from the different parts [inflorescences (E.a.I), stems + leaves (E.a.SL) and roots (E.a.R)] of E. aquifolium Cav. gathered in Cádiz (Spain), have been extracted by steam distillation and analyzed by gas chromatography and gas chromatography coupled to mass spectrometry. Quantitative and qualitative differences have been found between the analyzed plant parts. A total of 107 compounds have been identified. The main constituents were germacrene D (30.3%) and sesquicineole (26.7%) for E.a.I fraction, germacrene D (46.0%) and myrcene (13.8%) in the E.a.SL, while E.a.R showed phyllocladene isomer (63.6%) as a unique major compound. The percentage composition of the other constituents was lower than 5.5% in all the analyzed fractions. In agreement with other Eryngium species, no specific compound could be used as a marker for the chemotaxonomy of E. aquifolium. However, similarities in volatile composition were found between E. aquifolium and other species growing under similar environmental conditions. As far as we know, this is the first report on the essential oil of this species.


2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Guido Flamini ◽  
Pier Luigi Cioni ◽  
Simonetta Maccioni ◽  
Rosa Baldini

The essential oil obtained by hydrodistillation of the flowering capitula of Coleostephus myconis (syn. Chrysanthemum myconis) was constituted almost exclusively of oxygenated sesquiterpenes (85.8%). The main constituent was T-cadinol (66.2%), followed by valeranone (8.2%), germacrene D (6.0%) and α-cadinol (4.6%). By mean of the SPME technique, the volatiles emitted in vivo by the whole capitula and by tubular and ligulate florets have been identified. Many differences were evidenced among the different organs and with respect to the essential oil


2010 ◽  
Vol 75 (10) ◽  
pp. 1361-1368 ◽  
Author(s):  
M.B. Hassanpouraghdam ◽  
G.R. Gohari ◽  
S.J. Tabatabaei ◽  
M.R. Dadpour

In order to characterize the essential oils of leaves and inflorescences, water distilled volatile oils of hydroponically grown Ocimum basilicum L. were analyzed by GC/EI-MS. Fifty components were identified in the inflorescence and leaf essential oils of the basil plants, accounting for 98.8 % and 99.9 % of the total quantified components respectively. Phenylpropanoids (37.7 % for the inflorescence vs. 58.3 % for the leaves) were the predominant class of oil constituents, followed by sesquiterpenes (33.3 % vs. 19.4 %) and monoterpenes (27.7 % vs. 22.1 %). Of the monoterpenoid compounds, oxygenated monoterpenes (25.2 % vs. 18.9 %) were the main subclass. Sesquiterpene hydrocarbons (25 % vs. 15.9 %) possessed the main subclass of sesquiterpenoidal compounds as well. Methyl chavicol, a phenylpropane derivative, (37.2 % vs. 56.7 %) was the principle component of both organ oils, with up to 38 % and 57 % of the total identified components of the inflorescence and leaf essential oils, respectively. Linalool (21.1 % vs. 13.1 %) was the second common major component followed by ?-cadinol (6.1 % vs. 3 %), germacrene D (6.1 % vs. 2.7 %) and 1,8-cineole (2.4 % vs. 3.5 %). There were significant quantitative but very small qualitative differences between the two oils. In total, considering the previous reports, it seems that essential oil composition of hydroponically grown O. basilicum L. had volatile constituents comparable with field grown counterparts, probably with potential applicability in the pharmaceutical and food industries.


2018 ◽  
Vol 42 (3) ◽  
pp. e12532 ◽  
Author(s):  
Marwa Khammassi ◽  
Sophia Loupassaki ◽  
Helmi Tazarki ◽  
Faten Mezni ◽  
Awatef Slama ◽  
...  

2012 ◽  
Vol 7 (12) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Isiaka A. Ogunwande ◽  
Razaq Jimoh ◽  
Adedoyin A. Ajetunmobi ◽  
Nudewhenu O. Avoseh ◽  
Guido Flamini

Essential oils obtained by hydrodistillation of leaves of two Nigerian species were analyzed for their constituents by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The leaf oil of Ficus benjamina L. (Moraceae), collected during the day, contained high contents of α-pinene (13.9%), abietadiene (9.7%), cis-α-bisabolene (8.2%) and germacrene-D-4-ol (8.4%), while the night sample was dominated by germacrene-D-4-ol (31.5%), 1,10-di- epi-cubenol (8.8%) and hexahydrofarnesylacetone (8.3%). This could be a possible indication of differences in emissions of volatiles by F. benjamina during the day and night. The main compounds of Irvingia barteri Hook. f. (Irvingiaceae) were β-caryophyllene (17.0%), (E)-α-ionone (10.0%), geranial (7.6%), (E)-β-ionone (6.6%) and β-gurjunene (5.1%).


2012 ◽  
Vol 7 (2) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
José Cárdenas ◽  
Janne Rojas ◽  
Luís Rojas-Fermin ◽  
María Lucena ◽  
Alexis Buitrago

The essential oils from fresh aerial parts of Monticalia greenmaniana (Hieron) C. Jeffrey (Asteraceae) collected in March, were analyzed by GC/MS. Oil yields (w/v) of 0.1% (flowers), 0.07%, (stems) and 0.1% (leaves) were obtained by hydrodistillation. Thirteen, sixteen and eighteen components, respectively, were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components of the flower and stem oils were 1-nonane (38.8% flowers; 33.5% stems), α-pinene (29.0% flowers; 14.8% stems) and germacrene D (15.6% flowers; 18.6% stems). However, in the leaf oil, germacrene D was observed at 50.7%, followed by β-cedrene at 8.4 %. The leaf essential oil showed a broad spectrum of antibacterial activity against the important human pathogenic Gram-positive and Gram-negative bacteria Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 19433), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 25955) with MIC values ranging from 75 to 6000 ppm.


2012 ◽  
Vol 7 (8) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Rajendra C. Padalia ◽  
Ram S. Verma ◽  
Amit Chauhan ◽  
Chandan S. Chanotiya ◽  
Anju Yadav

The essential oil composition of the leaves, stem, flowers and roots of Ligusticopsis wallichiana (DC.) Pimenov & Kljuykov were analyzed by GC-FID and GC-MS methods. Forty-five constituents, forming 93.2%–97.8% of the oil compositions, were dominated by acetylenic (31.5%–92.8%) compounds and sesquiterpenoids (0.3%–44.4%). The leaf essential oil was mainly composed 3,5-nonadiyne (35.8%), β-selinene (20.9%), α-funebrene (10.1%) and ( Z)-falcarinol (6.1%). The stem oil was dominated by acetylenic compounds (73.8%) represented by 3,5-nonadiyne (67.8%) and ( Z)-falcarinol (5.7%). On the contrary, the major components of the flower essential oil were sesquiterpenoids (37.5%), such as germacrene D (16.6%), α-funebrene (7.4%), and acetylenic compounds (31.5%), such as ( Z)-falcarinol (21.0%) and 3,5-nonadiyne (10.0%). Monoterpenoids constituted 23.9% of the flower oil with limonene (19.9%) as the single major constituent. The essential oil of the roots was dominated by 3,5-nonadiyne (90.5%). The results showed considerable qualitative and quantitative variations in the essential oil compositions of the different plant parts of L. wallichiana. ( Z)-Falcarinol (1.9%–21.0%) and α-funebrene (0.1%–10.1%) were reported for the first time from the essential oils of L. wallichiana.


2016 ◽  
Vol 49 (2) ◽  
pp. 97-105
Author(s):  
S. Kizil ◽  
Ö. Tonçer

Abstract Lemon verbena (Lippia citriodora H.B.K., Verbenaceae family) is indigenous to South America and cultivated as an aromatic plant in various parts of world. Lemon thyme (Thymus citriodorus L.), Lamiaceae family, is a perennial medicinal plant native to southern Europe and is cultivated in the Mediterranean region. These species are cultivated mainly for the lemon-like aroma emitted from their leaves due to the presence of dimethyl-2,6- octadienal, also known as lemonal or citral, which is used in food and perfumery for its citrus effect. The aim of this study was to determine the mineral content and essential oil components of L. citriodora and T. citriodorus plants grown under semi-arid climatic conditions in Turkey. The aerial parts of lemon thyme and lemon verbena plants were extracted using hydrodistillation. The essential oil composition was analyzed by gas chromatography-mass spectrometry (GC-MS) and the microelement contents of the herbs were examined via inductively coupled plasmaoptical emission spectrometry (ICP-OES). The microelement contents were 0.249, 1.630, 16.41, 0.106, and 13.1-36.2 mg kg-1 for cadmium (Cd), copper (Cu), iron (Fe), and manganese (Mn), respectively, in lemon thyme, and 0.275, 4.584, 248.1, 15.71, and 1.803 mg kg-1 for Cd, Cu, Fe, Mn, and zinc (Zn), respectively, in lemon verbena. Fifty compounds were identified in lemon verbena essential oil, including limonene (30.33%), trans-citral (17%), cis-citral (12.77%), caryophyllene oxide (5.71%), and geraniol acetate (4.02%) that together constituted 99.86% of the oil composition. We also identified 22 compounds constituting approximately 85.11% of lemon thyme essential oil, including transgeraniol (30.07%), trans-citral (15.06%), cis-citral (11.71%), cis-geraniol (7.65%), and 3-octanol (6.18%).


Sign in / Sign up

Export Citation Format

Share Document