scholarly journals Chennai Water Resource Management Using GIS

2021 ◽  
Author(s):  
Saral Purohit ◽  
Gadhiya Jay Dipakbhai ◽  
G. Abirami

Water scarcity is one of the biggest problems in the country of India, this problem is often caused by poor water resource management. Notably in India, the city of Chennai has had a water crisis going on for the past few years. On June 19th, 2019, the city officials declared that the city had run out of water. This was termed as ‘Day Zero’ where there was no water left. Most of the lakes of Chennai dried out. Poor water management and very less rainfall were the major reasons for this scarcity. Water resource management thus is of critical importance to ensure that water is utilized in the right way. So the aim of the proposed system is to evaluate the nature, significance, and rate of change in the water bodies of Chennai over a period of time using GIS/Remote sensing and assess the past and present conditions of water bodies in Chennai and to understand the dynamics and trends of change through various forms of spatial analysis. This is achieved by using different functionalities of ArcGIS and ArcMap and then analysing the obtained data and maps.

2017 ◽  
Author(s):  
Mengsheng Qin ◽  
Lu Hao ◽  
Lei Sun ◽  
Yongqiang Liu ◽  
Ge Sun

Abstract. Reference evapotranspiration (ETo) is an important hydrometeorological term widely used in water resource management, hydrological modeling, and understanding and projecting the hydrological effects of future climate change and land use change. Identifying the individual climatic controls on ETo helps better understand the processes of global climatic change impacts on local water resources and also simplify modeling efforts to predict actual evapotranspiration. We conducted a case study on the Qinhuai River Basin (QRB), a watershed dominated by a humid subtropical climate and mixed land uses in southern China. Long term (1961–2012) daily meteorological data at six weather stations across the watershed were used to estimate ETo by the FAO-56 Penman−Monteith model. The seasonal and annual trends of ETo were examined using the Mann−Kendall nonparametric test. The individual contributions from each meteorological variable were quantified by a detrending method. The results showed that basin-wide annual ETo had a decreasing trend during 1961–1987 due to decreased wind speed (WS), solar radiation (Rs), vapor pressure deficit (VPD), and increased relative humidity (RH). These variables had different magnitudes of contribution to the ETo trend in different seasons examined during 1961−1987. However, during 1988–2012, both seasonal and annual ETo showed an increasing trend, mainly due to increased VPD and decreased RH and, to lesser extent, to decreased absolute humidity (AH) and a rising air temperature. We show that the key climatic controls on ETo have dramatically shifted as a result of global climate change during the past five decades. Now the atmospheric demand, instead of air temperature alone, is a major control on ETo. Thus, we conclude that accurately predicting current and future ETo and hydrological change under a changing climate must consider changes in VPD (i.e., air humidity and temperature) in the study region. Water resource management in the study basin must consider the increasing trend of ETo to meet the associated increasing water demand for irrigation agriculture and domestic water uses.


Author(s):  
D. Sheth ◽  
M. Iyer

Abstract Access to clean water is important for socio-economic development worldwide. Bhuj, in an arid region in Gujarat State in India, has an ancient and unique water resource management system. The city's visionary king developed a catchment system of lakes so that, despite minimal rainfall and frequent droughts, sufficient water could be stored to sustain the city for around 300 years. However, over the years, with rapid urbanization and the introduction of a piped water supply, this ancient supply system was abandoned and was not maintained well. As a result, the city's water resources became polluted and defunct, which forced it to depend on distant water sources. This study shows how the city's water management strategies changed before independence (1947), and pre-earthquake (1947–2001) and post-earthquake (2001 to present). The paper mainly documents how the city's own water resources can be managed successfully by following the concepts of IUWM through effective stakeholder participation, to make the city water-secure.


2016 ◽  
Vol 4 (1) ◽  
pp. 7-30 ◽  
Author(s):  
L. DeBell ◽  
K. Anderson ◽  
R.E. Brazier ◽  
N. King ◽  
L. Jones

Lightweight, portable unmanned aerial vehicles (UAVs) or ‘drones’ are set to become a key component of a water resource management (WRM) toolkit, but are currently not widely used in this context. In practical WRM there is a growing need for fine-scale responsive data, which cannot be delivered from satellites or aircraft in a cost-effective way. Such a capability is needed where water supplies are located in spatially heterogeneous dynamic catchments. In this review, we demonstrate the step change in hydrological process understanding that could be delivered if WRM employed UAVs. The paper discusses a range of pragmatic concepts in UAV science for cost-effective and practical WRM, from choosing the right sensor and platform combination through to practical deployment and data processing challenges. The paper highlights that multi-sensor approaches, such as combining thermal imaging with fine-scale structure-from-motion topographic models, are currently best placed to assist in WRM decision-making because they provide a means of monitoring the spatio-temporal distribution of sources, sinks, and flows of water through landscapes. The manuscript highlights areas where research is needed to support the integration of UAVs into practical WRM, for example, in improving positional accuracy through integration of differential global positioning system sensors, and developing intelligent control of UAV platforms to optimize the accuracy of spatial data capture.


Waterlines ◽  
1997 ◽  
Vol 16 (1) ◽  
pp. 23-25
Author(s):  
Barry Lloyd ◽  
Teresa Thorpe

Sign in / Sign up

Export Citation Format

Share Document