scholarly journals Reference Architectures for Industry 4.0: Literature Review

Author(s):  
Alexandre Helmann ◽  
Fernando Deschamps ◽  
Eduardo de Freitas Rocha Loures

Currently, production systems are receiving the application of more advanced, integrated and connected technologies to optimize the performance of their manufacturing processes. The new technological solutions demand architectures that support intelligent solutions for a new digitalized industry. However, production systems already in operation have difficulty in implementing these technologies. The existing barriers limit the availability of the direct integration of different systems contemplated in an automation system architecture. This article systematically reviews the existing literature to portray the characteristics of each architecture and that can guide the adoption of new technologies. Through this review, emerging reference architectures were identified, such as RAMI4.0, IIRA, IBM Industry 4.0 and NIST Smart Manufacturing. In conclusion, the article presents a framework for considering which model best fits with the new technological solutions.

2021 ◽  
Vol 32 (9) ◽  
pp. 285-303
Author(s):  
Adriana Ito ◽  
Torbjörn Ylipää ◽  
Per Gullander ◽  
Jon Bokrantz ◽  
Victor Centerholt ◽  
...  

PurposeResistance is expected to emerge with the implementation and use of new technologies in production systems. This work focuses on identifying sources of resistance to the use of Industry 4.0 technologies when managing production disturbances and suitable managerial approaches to deal with them.Design/methodology/approachA qualitative approach was chosen in this research. The authors conducted a literature review and a series of interviews. Thirty-one papers from the literature review were analysed, and 16 people from five different companies were interviewed.FindingsThe authors identified five different sources of resistance and three managerial approaches to dealing with them. The sources of resistance were based on (1) feelings of over-supervision, (2) unclear values, (3) feelings of inadequacy, (4) concerns about loss of power and jobs and (5) work overload. The three approaches to dealing with resistance are (1) communication, (2) participation and (3) training.Originality/valueThis work identifies the sources and strategies to deal with resistance to the use of Industry 4.0 technologies in the management of production disturbances. The managerial literature in this area is limited, and to the authors's knowledge, the specific sources for resistance and strategies to deal with that in this topic have not been systematically investigated before.


2021 ◽  
Vol 13 (10) ◽  
pp. 264
Author(s):  
Tuuli Katarina Lepasepp ◽  
William Hurst

Ever since the emergence of Industry 4.0 as the synonymous term for the fourth industrial revolution, its applications have been widely discussed and used in many business scenarios. This concept is derived from the advantages of internet and technology, and it describes the efficient synchronicity of humans and computers in smart factories. By leveraging big data analysis, machine learning and robotics, the end-to-end supply chain is optimized in many ways. However, these implementations are more challenging in heavily regulated fields, such as medical device manufacturing, as incorporating new technologies into factories is restricted by the regulations in place. Moreover, the production of medical devices requires an elaborate quality analysis process to assure the best possible outcome to the patient. Therefore, this article reflects on the benefits (features) and limitations (obstacles), in addition to the various smart manufacturing trends that could be implemented within the medical device manufacturing field by conducting a systematic literature review of 104 articles sourced from four digital libraries. Out of the 7 main themes and 270 unique applied technologies, 317 features and 117 unique obstacles were identified. Furthermore, the main findings include an overview of ways in which manufacturing could be improved and optimized within a regulated setting, such as medical device manufacturing.


At the present scenario, agriculture industries are working hard to produce farmer satisfied products at affordable cost. The globalization and heavy worldwide competition stress them to precise and sustain in the market. The existing system are to be modified for smart manufacturing to cop up international benchmarking. The modifications consist of modern machine tools, automation system, machine learning technologies and systematic approach. The existing system and path for every individual industry are unique. Here the skill needed is to fit suitable enablers to the factors. The enactment of Industry 4.0 appropriately to industry is a task, because different industries lie at different sectors. In this context a study is carried to identify the important technological enablers for the enactment of Industry 4.0 in Indian agricultural industries. Various enablers essential for implementing Industry 4.0 has been identified from literature review. The Interpretive structural modelling(ISM) is employed for finding the mutual relationship among the enablers. Data collected to rank the enablers in the agricultural field. The technological enablers are further being classified as dependent and driving factors. Thus a hypothetical model is created based on literature review. A proper acknowledgement of interactions among enablers will help organization to rank the factors and manage these factors with more efficiency to produce advantages of implementing Industry 4.0. This paper is aiming to identify the various enablers to implement Industry4.0 in Indian industries.


2021 ◽  
Vol 13 (2) ◽  
pp. 751
Author(s):  
Mihai Andronie ◽  
George Lăzăroiu ◽  
Mariana Iatagan ◽  
Iulian Hurloiu ◽  
Irina Dijmărescu

In this article, we cumulate previous research findings indicating that cyber-physical production systems bring about operations shaping social sustainability performance technologically. We contribute to the literature on sustainable cyber-physical production systems by showing that the technological and operations management features of cyber-physical systems constitute the components of data-driven sustainable smart manufacturing. Throughout September 2020, we performed a quantitative literature review of the Web of Science, Scopus, and ProQuest databases, with search terms including “sustainable industrial value creation”, “cyber-physical production systems”, “sustainable smart manufacturing”, “smart economy”, “industrial big data analytics”, “sustainable Internet of Things”, and “sustainable Industry 4.0”. As we inspected research published only in 2019 and 2020, only 323 articles satisfied the eligibility criteria. By eliminating controversial findings, outcomes unsubstantiated by replication, too imprecise material, or having similar titles, we decided upon 119, generally empirical, sources. Future research should investigate whether Industry 4.0-based manufacturing technologies can ensure the sustainability of big data-driven production systems by use of Internet of Things sensing networks and deep learning-assisted smart process planning.


2020 ◽  
Vol 25 (3) ◽  
pp. 505-525 ◽  
Author(s):  
Seeram Ramakrishna ◽  
Alfred Ngowi ◽  
Henk De Jager ◽  
Bankole O. Awuzie

Growing consumerism and population worldwide raises concerns about society’s sustainability aspirations. This has led to calls for concerted efforts to shift from the linear economy to a circular economy (CE), which are gaining momentum globally. CE approaches lead to a zero-waste scenario of economic growth and sustainable development. These approaches are based on semi-scientific and empirical concepts with technologies enabling 3Rs (reduce, reuse, recycle) and 6Rs (reuse, recycle, redesign, remanufacture, reduce, recover). Studies estimate that the transition to a CE would save the world in excess of a trillion dollars annually while creating new jobs, business opportunities and economic growth. The emerging industrial revolution will enhance the symbiotic pursuit of new technologies and CE to transform extant production systems and business models for sustainability. This article examines the trends, availability and readiness of fourth industrial revolution (4IR or industry 4.0) technologies (for example, Internet of Things [IoT], artificial intelligence [AI] and nanotechnology) to support and promote CE transitions within the higher education institutional context. Furthermore, it elucidates the role of universities as living laboratories for experimenting the utility of industry 4.0 technologies in driving the shift towards CE futures. The article concludes that universities should play a pivotal role in engendering CE transitions.


Author(s):  
Christian Brecher ◽  
Aleksandra Müller ◽  
Yannick Dassen ◽  
Simon Storms

AbstractSince 2011, the Industry 4.0 initiative is a key research and development direction towards flexible production systems in Germany. The objective of the initiative is to deal with the challenge of an increased production complexity caused by various factors such as increasing global competition between companies, product variety, and individualization to meet customer needs. For this, Industry 4.0 envisions an overarching connection of information technologies with the production process, enabling smart manufacturing. Bringing current production systems to this objective will be a long transformation process, which requires a coherent migration path. The aim of this paper is to represent an exemplary production development way towards Industry 4.0 using eminent formalization approaches and standardized automation technologies.


Author(s):  
Eleni Didaskalou ◽  
Petros Manesiotis ◽  
Dimitrios Georgakellos

Engineering concepts usually, are complex concepts, thus many times are difficult for infusing into curriculums or to be comprehensive for practitioners. A concept that still now is not fully understandable is that of Industry 4.0, an approach that increases the complexity of production systems. Nowadays production systems are facing new challenges, as physical productions systems and internet technologies are directly linked, hence increasing the complexity but also the productivity of the systems. The paper introduces an approach of visualizing the concept of smart manufacturing in the context of Industry 4.0, as the term is not clearly specified, although has attracted attention both academicians and businesses. Concept mapping is a method of capturing and visualizing complex ideas. Concept maps are graphical tools for organizing, representing and communicating complex ideas by breaking them into more key concepts. As Industry 4.0 is a factor that can boost innovation and competitiveness of business, all parties involved in shaping the strategy of an organization, should perceive the issues to be covered. Furthermore, learners must be prepared to meet these challenges and knowledgebuilding activities may enhance their process of learning. The paper makes an interesting and valuable contribution, by identifying key concepts within the subject of smart manufacturing and Industry 4.0, using the method of concept mapping. Taking into consideration these concepts a conceptual framework will be introduced, by using the software tool CmapTools. The map can be used as a basis for future research in constructing a more comprehensive framework and identifying the concepts that describe smart manufacturing in the context of Industry 4.0, in a more thorough manner.


Author(s):  
İsmail Yıldırım

Industry 4.0 defines the fourth industrial revolution, a new level in the organization and management of products and production systems. This cycle consists of services that include the entire chain, including individualized customer requests, product development, production order, distribution, and recycling to the end user. One of the most important preconditions for the realization of the Industry 4.0 revolution is that companies have completed their digital transformations. New technologies and digitalization have brought a new understanding of insurance. Insurance companies are focused on four areas such as big data, artificial intelligence, internet of objects, and blockchain in the changing world. With the changing habits of consumers in their daily lives, new generation insurance needs emerged. The introduction of a new era shaped by the insurance industry with new products, services, competitors, and customer expectations will have various effects. This chapter describes how Industry 4.0 transforms the insurance sector.


Sign in / Sign up

Export Citation Format

Share Document