scholarly journals Automation technology as a key component of the Industry 4.0 production development path

Author(s):  
Christian Brecher ◽  
Aleksandra Müller ◽  
Yannick Dassen ◽  
Simon Storms

AbstractSince 2011, the Industry 4.0 initiative is a key research and development direction towards flexible production systems in Germany. The objective of the initiative is to deal with the challenge of an increased production complexity caused by various factors such as increasing global competition between companies, product variety, and individualization to meet customer needs. For this, Industry 4.0 envisions an overarching connection of information technologies with the production process, enabling smart manufacturing. Bringing current production systems to this objective will be a long transformation process, which requires a coherent migration path. The aim of this paper is to represent an exemplary production development way towards Industry 4.0 using eminent formalization approaches and standardized automation technologies.

Author(s):  
Guido Vinci Carlavan ◽  
Daniel Alejandro Rossit

Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.


Author(s):  
Amrut Rao ◽  
Ravindra Pathak ◽  
Ashraf Mahmud Rayed

Ethiopia, India and Bangladesh are raising economic power, but have not yet integrated very much with the global economy and still have not achieved their potential in context of technology, globalization, and international competitiveness like developed countries. These countries have much strength, but at the same time , are facing many challenges in the increasingly competitive and fast changing global economy. The main key strengths of these courtiers are their large domestic market, young and growing population, a strong private sector with experience in market institutions, and a well developed legal and financial system. In today’s environment of global competition, technological development and innovation; companies, especially manufacturing, are forced to reconfigure their manufacturing and management processes. Industry 4.0 and intelligent manufacturing are part of a transformation, in which manufacturing and information technologies have been integrated to create innovative systems of manufacturing, management and ways of doing business. This system allows optimizing manufacturing, to achieve greater flexibility, efficient production processes and generate a value added proposal for their customers, as well as to provide a timely response to their market needs. The objective of this work is to explore the Industry 4.0, smart manufacturing, environment requirement and relation of innovation in perspective of developing countries.


Author(s):  
Eleni Didaskalou ◽  
Petros Manesiotis ◽  
Dimitrios Georgakellos

Engineering concepts usually, are complex concepts, thus many times are difficult for infusing into curriculums or to be comprehensive for practitioners. A concept that still now is not fully understandable is that of Industry 4.0, an approach that increases the complexity of production systems. Nowadays production systems are facing new challenges, as physical productions systems and internet technologies are directly linked, hence increasing the complexity but also the productivity of the systems. The paper introduces an approach of visualizing the concept of smart manufacturing in the context of Industry 4.0, as the term is not clearly specified, although has attracted attention both academicians and businesses. Concept mapping is a method of capturing and visualizing complex ideas. Concept maps are graphical tools for organizing, representing and communicating complex ideas by breaking them into more key concepts. As Industry 4.0 is a factor that can boost innovation and competitiveness of business, all parties involved in shaping the strategy of an organization, should perceive the issues to be covered. Furthermore, learners must be prepared to meet these challenges and knowledgebuilding activities may enhance their process of learning. The paper makes an interesting and valuable contribution, by identifying key concepts within the subject of smart manufacturing and Industry 4.0, using the method of concept mapping. Taking into consideration these concepts a conceptual framework will be introduced, by using the software tool CmapTools. The map can be used as a basis for future research in constructing a more comprehensive framework and identifying the concepts that describe smart manufacturing in the context of Industry 4.0, in a more thorough manner.


Author(s):  
Luis Alberto Estrada-Jimenez ◽  
Terrin Pulikottil ◽  
Nguyen Ngoc Hien ◽  
Agajan Torayev ◽  
Hamood Ur Rehman ◽  
...  

Interoperability in smart manufacturing refers to how interconnected cyber-physical components exchange information and interact. This is still an exploratory topic, and despite the increasing number of applications, many challenges remain open. This chapter presents an integrative framework to understand common practices, concepts, and technologies used in trending research to achieve interoperability in production systems. The chapter starts with the question of what interoperability is and provides an alternative answer based on influential works in the field, followed by the presentation of important reference models and their relation to smart manufacturing. It continues by discussing different types of interoperability, data formats, and common ontologies necessary for the integration of heterogeneous systems and the contribution of emerging technologies in achieving interoperability. This chapter ends with a discussion of a recent use case and final remarks.


2019 ◽  
Vol 9 (18) ◽  
pp. 3865 ◽  
Author(s):  
Mehrshad Mehrpouya ◽  
Amir Dehghanghadikolaei ◽  
Behzad Fotovvati ◽  
Alireza Vosooghnia ◽  
Sattar S. Emamian ◽  
...  

Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations.


Author(s):  
Mustafa Atilla Arıcıoğlu ◽  
Büşra Yiğitol

It is envisioned that the fourth industrial revolution contains many concepts such as modern automation and production systems, data collection, data processing, analysis, and data transfer and consists of intelligent factory applications such as augmented reality, the internet of things, cyber physical, and cyber security systems. It reveals the fact that a new era awaits enterprises in the relationship between technology and production due to these predictions for future changes. SMEs are one of the important segments that these triggers, which are the precursors of structural change, will affect. So how will SMEs experience the Industry 4.0 process? What do unmanned factories mean for SMEs? Which countries/SMEs will have the Industry 4.0 technology and Industry 4.0 infrastructure which require high capital, Which of them will create opportunities? In this chapter, the problems that SMEs will face in the digital transformation process and the political and strategic approaches that can be developed to deal with these problems will be evaluated.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5499
Author(s):  
Felipe S. Costa ◽  
Silvia M. Nassar ◽  
Sergio Gusmeroli ◽  
Ralph Schultz ◽  
André G. S. Conceição ◽  
...  

The Industry 4.0 paradigm, since its initial conception in Germany in 2011, has extended its scope and adoption to a broader set of technologies. It is being considered as the most vital mechanism in the production systems lifecycle. It is the key element in the digital transformation of manufacturing industry all over the world. This scenario imposes a set of major unprecedented challenges which require to be overcome. In order to enable integration in horizontal, vertical, and end-to-end formats, one of the most critical aspects of this digital transformation process consists of effectively coupling digital integrated service/products business models with additive manufacturing processes. This integration is based upon advanced AI-based tools for decentralized decision-making and for secure and trusted data sharing in the global value. This paper presents the FASTEN IIoT Platform, which targets to provide a flexible, configurable, and open solution. The platform acts as an interface between the shop floor and the industry 4.0 advanced applications and solutions. Examples of these efforts comprise management, forecasting, optimization, and simulation, by harmonizing the heterogeneous characteristics of the data sources involved while meeting real-time requirements.


2021 ◽  
pp. 1-4
Author(s):  
Janet K. Allen ◽  
Sesh Commuri ◽  
Jianxin Jiao ◽  
Jelena Milisavljevic-Syed ◽  
Farrokh Mistree ◽  
...  

Abstract This special issue is motivated by the trend of smart factories of the future towards the fourth Industrial Revolution, which makes it possible to better leverage capabilities and resources in a human-cyber-physical production environment. This emerging paradigm of Industry 4.0 poses new systems design problems at the interface of smart manufacturing, robust and flexible automation, distributed and reconfigurable production systems industrial IoT, and supply chain integration. Recent advances of design engineering in the age of Industry 4.0 are presented in this special issue. More than forty (40) papers were received and peer-reviewed, out of which thirteen (13) papers were selected for publication. These are both theoretical and practical, as well as state-of-the-art reviews, new perspectives, and outlook for future research directions in the field. The papers span a range of design aspects and Industry 4.0 technologies. There are three intersecting clusters in this category: design principles and techniques for Industry 4.0, smart manufacturing technologies, and machine learning and data-driven techniques for Industry 4.0.


Author(s):  
Robert Ojsteršek ◽  
Iztok Palčič ◽  
Borut Buchmeister

Industry 4.0 has recently opened a number of new research questions relating to the production scheduling of flexible production systems. The high complexity of flexible production systems` scheduling is reflected in the multi-objective nature of optimisation problems, which cannot be solved satisfactorily with conventional techniques. Researchers are developing various optimisation techniques based on the use of advanced evolutionary computation methods and simulation modelling, but it is difficult to transmit the proposed solutions to the real world of Industry 4.0. The chapter present new method of evolutionary computation and simulation modelling for the purpose of comprehensive multi-objective optimisation of flexible production systems. In the research part, the chapter presents an applied example of the advanced optimisation methods used in order to provide timely and economically sustainable production systems in Industry 4.0. The research results prove the importance and justification of using the proposed CPS architecture ensuring economic and time optimised production systems.


Sign in / Sign up

Export Citation Format

Share Document