Determination of Particle Sedimentation Rate by Ultrasonic Interferometry: Role of Particle Size, Density and Volume Fraction

Biorheology ◽  
1997 ◽  
Vol 34 (4-5) ◽  
pp. 349-362 ◽  
Author(s):  
S.M. Razavian ◽  
R.B. Wenby ◽  
T.C. Fisher ◽  
H.J. Meiselman
1961 ◽  
Vol 34 (2) ◽  
pp. 697-704 ◽  
Author(s):  
W. A. Ladd ◽  
M. W. Ladd

Abstract Until recently, the main role of the electron microscope in rubber research was the determination of particle size and shape of reinforcing pigments and fillers. The electron microscope proved its value in its first industrial problem in 1940 when it showed the particle size of Micronex to be 28 mµ. In 1942 it established the correlation between particle size of carbon and rubber properties. The next contribution was the establishment of reticulate chain structure, in 1945, using stereo-photomicrography. The electron microscope led the way to the carbon gel concept when carbons producing different road wear results were shown to have equal particle size and structure. Micrographs of carbon gel were published in 1951. Studies of rubber latexes, various pigments and fillers were also applications of the electron microscope in which the determination of particle size and shape was involved. Today, improvements in resolution, development of new techniques and accessory equipment have greatly expanded the application of the electron microscope. This paper is concerned mainly with describing these new developments ; first, as a help to electron microscopists in the rubber field; second, to illustrate what can be done with the electron microscope, so that research and production men can recognize possible applications of this discerning tool to the solution of their problems. Electron microscopes have come a long way in the short 20-year period. Figure 1 shows the microscope used in our laboratories. This instrument is currently resolving detail as fine as 10 A or 1 mµ in routine daily operation. Its design makes possible the development of special holders and thereby increases its value as a research tool. Another piece of equipment that is as important in microscope research as the electron microscope itself is the evaporating unit shown in Figure 2. This is used for shadowing and forming replication films under vacuum, thus making possible studies of rubber surfaces and surfaces of pigments and other rubber ingredients. In shadowing, detail is made visible by coating the specimen with metal evaporated at an angle from the tungsten basket at A. Carbon can be evaporated by the arc at B, forming a replicating film or mold of the specimen. This will be discussed under “preparation”. Today, the proper preparation of specimens is the most important step in successful microscopy. The various preparations used are as follows.


1999 ◽  
Vol 8 (5) ◽  
pp. 096369359900800
Author(s):  
C. Tallaron ◽  
S. Barre

The aim of this study is the determination of the overall elastic tensor of two 3D composites. These materials have a multiscale architecture. The representative volume element of the composite architecture (symbolised by a unit-cell) is composed of three bundles in three orthogonal directions and two matrix pockets. Each bundle is a unidirectional composite formed by a juxtaposition of long fibres surrounded by the matrix. Due to their symmetry, the bundles are considered transversally isotropic according to the fibres axis, whereas the pockets are macroscopically isotropic. The analytical computation is produced in two steps. The first step consists of determining the elastic tensor of the bundles. The second step is the calculation of the elastic tensor of the whole composite. The most part of the used equations comes from bibliography, excepted the determination of shear coefficients of the composite. The last part of this study devoted to the influence of material parameters presents the relative role of the fibres, the matrix and their volume fraction.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1780
Author(s):  
Chonghao Wang ◽  
Deqing Gan

In this study, we developed a pipeline transport model to investigate the influence of particle sedimentation factors on slurry transportation through pipelines. The particle tracking module of the software was used to simulate the transport process, and the influences on the sedimentation rate were analyzed considering the slurry concentration, particle size, and flow velocity. The established model exhibited small calculation errors. In addition, the results revealed that the proposed model is reliable for calculating the degree of influence of various factors on particle sedimentation. The effect of the particle sedimentation rate on the pipeline slurry was explored considering the particle size, slurry concentration, and flow velocity. The sedimentation rate was positively related to particle size and adversely related to the slurry concentration and flow velocity. Indeed, study on the sedimentation rate requires considering a reasonable range of particle sizes, preparing a slurry with an appropriate concentration, and adjusting an appropriate flow velocity. Numerical simulations were performed using the filling data as the background for a sample mining area. The experimental results showed optimal slurry concentration and particle size of 60% and 25.25 µm, respectively.


2012 ◽  
Vol 710 ◽  
pp. 383-388
Author(s):  
N.V. Ravi Kumar ◽  
Hina Gokhale ◽  
Amol A. Gokhale

Metallic foams find specialised applications in industry due to their unique properties such as ultra light weight and high impact energy absorption. When ceramic particles (e.g. SiC, Al2O3) are present, metal matrix composite (MMC) foams can be fabricated. Further it is known theoretically that foam strength is proportional to strength of foam material, and also it has been established that metal matrix composites exhibit better strength vis-à-vis their matrix metal. Accordingly, the present work is undertaken to study the processing of composite foams. Al-Si-Mg/SiCP foams were successfully prepared via liquid metallurgy processing using TiH2. The role of particle size, volume fraction (5 to 20 vol. %), and temperature (640 and 670°C) on foaming tendency were explored using the design of experiments approach. Liquid foams with reasonably good expansions could be achieved for all the combinations of particle size, volume %, and foaming temperature. Temperature has a dominant effect on foam collapse (decay) during solidification, irrespective of the particle size and vol. %. For foams processed at 640°C, the cell size variation is marginal along the foam height, except at the top portion which has finer cells. The evolution of foam, and the role of SiC on foam stability are discussed based on macro and microstructural results.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document