Influence of sterilization conditions on sulfate-functionalized polyGGE

Author(s):  
Shuo Zhou ◽  
Xun Xu ◽  
Nan Ma ◽  
Friedrich Jung ◽  
Andreas Lendlein

Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained.

2018 ◽  
Vol 18 (05) ◽  
pp. 426-435 ◽  
Author(s):  
Laura Rowe ◽  
Julie Peller ◽  
Claire Mammoser ◽  
Kelly Davidson ◽  
Amy Gunter ◽  
...  

AbstractAlmost all living organisms on Earth utilize the same 20 amino acids to build their millions of different proteins, even though there are hundreds of amino acids naturally occurring on Earth. Although it is likely that both the prebiotic and the current environment of Earth shaped the selection of these 20 proteinogenic amino acids, environmental conditions on extraterrestrial planets and moons are known to be quite different than those on Earth. In particular, the surfaces of planets and moons such as Mars, Europa and Enceladus have a much greater flux of UV and gamma radiation impacting their surface than that of Earth. Thus, if life were to have evolved extraterrestrially, a different lexicon of amino acids may have been selected due to different environmental pressures, such as higher radiation exposure. One fundamental property an amino acid must have in order to be of use to the evolution of life is relative stability. Therefore, we studied the stability of three different proteinogenic amino acids (tyrosine, phenylalanine and tryptophan) as compared with 20 non-proteinogenic amino acids that were structurally similar to the aromatic proteinogenic amino acids, following ultraviolet (UV) light (254, 302, or 365 nm) and gamma-ray irradiation. The degree of degradation of the amino acids was quantified using an ultra-high performance liquid chromatography-mass spectrometer (UPLC-MS). The result showed that many non-proteinogenic amino acids had either equal or increased stability to certain radiation wavelengths as compared with their proteinogenic counterparts, with fluorinated phenylalanine and tryptophan derivatives, in particular, exhibiting enhanced stability as compared with proteinogenic phenylalanine and tryptophan amino acids following gamma and select UV irradiation.


2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


1996 ◽  
Vol 11 (3) ◽  
pp. 461-469 ◽  
Author(s):  
C YONEZAWA ◽  
T TANAKA ◽  
H KAMIOKA

1989 ◽  
Vol 12 (2) ◽  
pp. 115-134 ◽  
Author(s):  
DONALD W. THAYER ◽  
JAMES J. SHIEH ◽  
RONALD K. JENKINS ◽  
JOHN G. PHILLIPS ◽  
EUGEN WIERBICKI ◽  
...  

2005 ◽  
Vol 293 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Takuya Kinoshita ◽  
Satoshi Seino ◽  
Yoshiteru Mizukoshi ◽  
Yohei Otome ◽  
Takashi Nakagawa ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
pp. 645-649
Author(s):  
Yu Gu ◽  
Yuqing Qiao ◽  
Yusen Meng ◽  
Ming Yu ◽  
Bowu Zhang ◽  
...  

Herein, we report for the first time the synthesis of polypyrrole copolymers with good solvent-dispersibility under gamma-ray irradiation at room temperature in air.


Sign in / Sign up

Export Citation Format

Share Document