Inhibitory Fcγ Receptor and Paired Immunoglobulin Type 2 Receptor Alpha Genotypes in Alzheimer’s Disease

2021 ◽  
pp. 1-4
Author(s):  
Janardan P. Pandey ◽  
Aryan M. Namboodiri ◽  
Paul J. Nietert ◽  
Lisa L. Barnes ◽  
David A. Bennett

We investigated whether FCGRIIB (rs1050501 C/T) and PILRA (rs1859788 A/G) genotypes contributed to the development of Alzheimer’s disease (AD). We genotyped 209 African American (AA) and 638 European American participants for the FCGRIIB and PILRA alleles. In the AA cohort, subjects homozygous for the C allele of FCGRIIB were more than 4 times as likely to develop AD as those homozygous for the alternative T allele. This SNP also interacted with PILRA: participants who were the carriers of the FCGRIIB C allele and PILRA A allele were 3 times as likely to develop AD as those who lacked these alleles.

2018 ◽  
Author(s):  
Nisha Rathore ◽  
Sree Ranjani Ramani ◽  
Homer Pantua ◽  
Jian Payandeh ◽  
Tushar Bhangale ◽  
...  

AbstractPaired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) is a cell surface inhibitory receptor that recognizes specific O-glycosylated proteins and is expressed on various innate immune cell types including microglia. We show here that a common missense variant (G78R, rs1859788) of PILRA is the likely causal allele for the confirmed Alzheimer’s disease risk locus at 7q21 (rs1476679). The G78R variant alters the interaction of residues essential for sialic acid engagement, resulting in >50% reduced binding for several PILRA ligands including a novel ligand, complement component 4A, and herpes simplex virus 1 (HSV-1) glycoprotein B. PILRA is an entry receptor for HSV-1 via glycoprotein B, and macrophages derived from R78 homozygous donors showed significantly decreased levels of HSV-1 infection at several multiplicities of infection compared to homozygous G78 macrophages. We propose that PILRA G78R protects individuals from Alzheimer’s disease risk via reduced inhibitory signaling in microglia and reduced microglial infection during HSV-1 recurrence.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (11) ◽  
pp. e1007427 ◽  
Author(s):  
Nisha Rathore ◽  
Sree Ranjani Ramani ◽  
Homer Pantua ◽  
Jian Payandeh ◽  
Tushar Bhangale ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Nataly Guzmán-Herrera ◽  
Viridiana C. Pérez-Nájera ◽  
Luis A. Salazar-Olivo

Background: Numerous studies have shown a significant association between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD), two pathologies affecting millions of people worldwide. Chronic inflammation and oxidative stress are two conditions common to these diseases also affecting the activity of the serpin alpha-1-antichymotrypsin (ACT), but a possible common role for this serpin in T2D and AD remains unclear. Objective: To explore the possible regulatory networks linking ACT to T2D and AD. Materials and Methods: A bibliographic search was carried out in PubMed, Med-line, Open-i, ScienceDirect, Scopus and SpringerLink for data indicating or suggesting association among T2D, AD, and ACT. Searched terms like “alpha-1-antichymotrypsin”, “type 2 diabetes”, “Alzheimer's disease”, “oxidative stress”, “pro-inflammatory mediators” among others were used. Moreover, common therapeutic strategies between T2D and AD as well as the use of ACT as a therapeutic target for both diseases were included. Results: ACT has been linked with development and maintenance of T2D and AD and studies suggest their participation through activation of inflammatory pathways and oxidative stress, mechanisms also associated with both diseases. Likewise, evidences indicate that diverse therapeutic approaches are common to both diseases. Conclusion: Inflammatory and oxidative stresses constitute a crossroad for T2D and AD where ACT could play an important role. In-depth research on ACT involvement in these two dysfunctions could generate new therapeutic strategies for T2D and AD.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


Author(s):  
Manel Ben Aissa ◽  
Cutler T. Lewandowski ◽  
Kiira M. Ratia ◽  
Sue H. Lee ◽  
Brian T. Layden ◽  
...  

2018 ◽  
Vol 56 (2) ◽  
pp. 833-843 ◽  
Author(s):  
Sudhanshu P. Raikwar ◽  
Sachin M. Bhagavan ◽  
Swathi Beladakere Ramaswamy ◽  
Ramasamy Thangavel ◽  
Iuliia Dubova ◽  
...  

2007 ◽  
Vol 3 (3S_Part_2) ◽  
pp. S143-S144
Author(s):  
Yvonne G. Hipps ◽  
Robin Socci ◽  
Harry Strothers ◽  
Regine Denis ◽  
Brenda Hayes

Sign in / Sign up

Export Citation Format

Share Document