Modeling and analyzing of magnetic field in unequal segmented Halbach array permanent magnet machine

Author(s):  
Liyan Guo ◽  
Huimin Wang ◽  
Xin Gu ◽  
Tingna Shi ◽  
Changliang Xia

Permanent magnet machine adopting Halbach array has more sinusoidal air-gap flux density distribution and higher air-gap flux density magnitude. Compared with the equal segmented Halbach array, the fundamental magnitude of air gap flux density can be higher and distortion rate can be lower by reasonably designing each segment width in unequal segmented Halbach array. Thus, in this paper, the permanent magnet machine adopting unequal segmented Halbach array is researched. Firstly, an analytical model is established for PM machine adopting Halbach array to improve the calculation efficiency. This analytical model can be applied to the Halbach array having arbitrary pole pair number, arbitrary number of segments per pole, arbitrary segment width and arbitrary gap width between segments. Further, the calculation results for air gap flux density between analytical model and finite element method are compared to verify the analytical model. In addition, the method to determine each segment width in the unequal segmented Halbach array is proposed firstly in this paper. On this basis, effects of the gap width between segments and each segment width under one pole on air gap flux density are researched. The research conclusions will provide guidance for the design and fabrication of unequal segmented Halbach array.

2014 ◽  
Vol 63 (1) ◽  
pp. 29-46
Author(s):  
Pawel Witczak ◽  
Witold Kubiak ◽  
Marcin Lefik ◽  
Jacek Szulakowski

Abstract The classic relationships concerning the harmonic content in the air gap field of three-phase machines are presented in form of series of rotating waves. The same approach is applied to modeling of permanent magnet motors with fractional phase windings. All main reasons of non-sinusoidal shape of flux density distribution, namely, magnets’ shape and their placement, slotting, magnetic saturation and eccentricity are also related to their counterparts in modal-frequency spectrum. The Fourier 2D spectrum of time-stepping finite element solution is confronted with results of measurements, with special attention paid to accuracy of both methods


2011 ◽  
Vol 383-390 ◽  
pp. 1084-1089
Author(s):  
Rui Huang ◽  
Shi Hong Wu ◽  
Hai Sui ◽  
Feng Li Jiang ◽  
Bo Hu

A synchronous permanent magnet planar motor (SPMPM) with Halbach array is proposed. The flux density distribution of Halbach array is obtained by analytical method; then, the characteristics of SPMPM with Halbach magnet array are evaluated. At last, the experiment results are used to verify the analysis propriety of this SPMPM. By comparison, it can be concluded that the analysis of SPMPM with Halbach magnet array is credible and feasible.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Yong Zhao ◽  
Fangzhou Lu ◽  
Changxin Fan ◽  
Jufeng Yang

This paper presents an alternative system called the axial-flux dual-stator toothless permanent magnet machine (AFDSTPMM) system for flywheel energy storage. This system lowers self-dissipation by producing less core loss than existing structures; a permanent magnet (PM) array is put forward to enhance the air–gap flux density of the symmetrical air gap on both sides. Moreover, its vertical stability is strengthened through the adoption of an axial-flux machine, so expensive active magnetic bearings can be replaced. The symmetry configuration of the AFDSTPMM system is shown in this paper. Then, several parts of the AFDSTPMM system are optimized thoroughly, including stator windings, number of pole pairs and the PM parameters. Further, the performance of the proposed PM array, including back-EMFs, air–gap flux density, average torque, torque ripple and over-load capacity, are compared with the Halbach PM array and spoke PM array, showing the superiority of proposed configuration. Finally, 3D simulations were made to testify for the 2D analyses.


2020 ◽  
Vol 12 (2) ◽  
pp. 110-116
Author(s):  
A. Ghaffari

This paper presents a 2D analytical model for predicting the magnetic flux density distribution in slotless permanent-magnet (PM) linear tubular (PMLT) motors due to armature reaction effects based on the sub-domain method. According to this method, the machine cross-section is divided into the six sub-regions and Maxwell partial differential equations (PDEs) are formed in each sub-region. Solving these PDEs leads to defining the magnetic vector potential in each sub-region and applying curl on the calculated magnetic vector potential results in determining the magnetic flux density components. Eventually, the extracted results are compared with those of the finite-element method (FEM) to confirm the accuracy of the described analytical model. The results reveal that the presented analytical model is a suitable candidate for predicting the magnetic flux density components of the slotless PMLT motors in a shorter time.


Sign in / Sign up

Export Citation Format

Share Document