Equivalent circuit modelling of a three-phase to seven-phase transformer using PSO and GA

2021 ◽  
pp. 1-10 ◽  
Author(s):  
Md Tabrez ◽  
Atif Iqbal ◽  
Pradip Kumar Sadhu ◽  
Mohammed Aslam Husain ◽  
Farhad Ilahi Bakhsh ◽  
...  

Impedance mismatching between different phases of a multiphase transformer is generally observed e.g., in a three-phase to seven-phase transformer, due to an unequal number of turns in different coils. This mismatching introduces error in the study of per phase equivalent circuit diagrams as well as induces an imbalance in output voltages and currents. Therefore, it is a challenging task to develop a per-phase equivalent circuit for the secondary and primary sides (In some cases) too. This paper proposes an artificial intelligence optimization technique like PSO based modeling of the per-phase equivalent circuit of the secondary side. This paper deals with the modeling and simulation of a three-phase to seven-phase power transformer using Artificial Intelligence technique like particle swarm optimization (PSO) and Genetic Algorithm (GA). The proposed model is optimized through PSO and GA algorithms and tested for minimum voltage error in each phase. The proposed model is designed and the objective function is optimized by PSO & GA in MATLAB environment. It is found that the optimized model can be effectively implemented as a per-phase equivalent circuit for the secondary side.

2021 ◽  
Vol 11 (6) ◽  
pp. 2608
Author(s):  
Chien-Hsun Liu ◽  
Willybrordus H. P. Muda ◽  
Cheng-Chien Kuo

A power transformer (PT) in power generation or transmission is critical to maintaining electrical continuity. Fault detection on a PT is needed, especially of incipient faults, which are often caused by a turn-to-turn fault (TTF) before it develops into a more severe fault. We use a hybrid algorithm between conventional and modern techniques to detect a developing fault in a PT. The current response signals from a negative sequence current directional algorithm, extended park vector algorithm (EPVA), differential negative sequence current, and EPVA-fuzzy system are combined to distinguish the possibility of a TTF. The subalgorithms are combined using a hybrid detection algorithm to distinguish the faults. The model is a 10 MVA, three-phase PT with Δ-Y configuration 150/300 kV, simulated using MATLAB Simulink software. The results show that by combining the subalgorithms, several limitations are distinguished within the TTF with a slight increase in accuracy.


Author(s):  
Kaixing Hong ◽  
Hai Huang

In this paper, a condition assessment model using vibration method is presented to diagnose winding structure conditions. The principle of the model is based on the vibration correlation. In the model, the fundamental frequency vibration analysis is used to separate the winding vibration from the tank vibration. Then, a health parameter is proposed through the vibration correlation analysis. During the laboratory tests, the model is validated on a test transformer, and manmade deformations are provoked in a special winding to compare the vibrations under different conditions. The results show that the proposed model has the ability to assess winding conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-12
Author(s):  
Sumit Das ◽  
Manas Kumar Sanyal ◽  
Sarbajyoti Mallik

There is a lot of fake news roaming around various mediums, which misleads people. It is a big issue in this advanced intelligent era, and there is a need to find some solution to this kind of situation. This article proposes an approach that analyzes fake and real news. This analysis is focused on sentiment, significance, and novelty, which are a few characteristics of this news. The ability to manipulate daily information mathematically and statistically is allowed by expressing news reports as numbers and metadata. The objective of this article is to analyze and filter out the fake news that makes trouble. The proposed model is amalgamated with the web application; users can get real data and fake data by using this application. The authors have used the AI (artificial intelligence) algorithms, specifically logistic regression and LSTM (long short-term memory), so that the application works well. The results of the proposed model are compared with existing models.


Author(s):  
Tse guan Tan ◽  
Jason Teo ◽  
On Chin Kim

AbstrakKini, semakin ramai penyelidik telah menunjukkan minat mengkaji permainan Kecerdasan Buatan (KB).Permainan seumpama ini menyediakan tapak uji yang sangat berguna dan baik untuk mengkaji asasdan teknik-teknik KB. Teknik KB, seperti pembelajaran, pencarian dan perencanaan digunakan untukmenghasilkan agen maya yang mampu berfikir dan bertindak sewajarnya dalam persekitaran permainanyang kompleks dan dinamik. Dalam kajian ini, satu set pengawal permainan autonomi untuk pasukan hantudalam permainan Ms. Pac-man yang dicipta dengan menggunakan penghibridan Evolusi PengoptimumanMultiobjektif (EPM) dan ko-evolusi persaingan untuk menyelesaikan masalah pengoptimuman dua objektifiaitu meminimumkan mata dalam permainan dan bilangan neuron tersembunyi di dalam rangkaianneural buatan secara serentak. Arkib Pareto Evolusi Strategi (APES) digunakan, teknik pengoptimumanmultiobjektif ini telah dibuktikan secara saintifik antara yang efektif di dalam pelbagai aplikasi. Secarakeseluruhannya, keputusan eksperimen menunjukkan bahawa teknik pengoptimuman multiobjektif bolehmendapat manfaat daripada aplikasi ko-evolusi persaingan Abstract Recently, researchers have shown an increased interest in game Artificial Intelligence (AI). Gamesprovide a very useful and excellent testbed for fundamental AI research. The AI techniques, such aslearning, searching and planning are applied to generate the virtual creatures that are able to think andact appropriately in the complex and dynamic game environments. In this study, a set of autonomousgame controllers for the ghost team in the Ms. Pac-man game are created by using the hybridizationof Evolutionary Multiobjective Optimization (EMO) and competitive coevolution to solve the bi-objectiveoptimization problem of minimizing the game's score by eating Ms. Pac-man agent and the number ofhidden neurons in neural network simultaneously. The Pareto Archived Evolution Strategy (PAES) is usedthat has been proved to be an effective and efficient multiobjective optimization technique in variousapplications. Overall, the results show that multiobjective optimizer can benefit from the application ofcompetitive coevolutionary


Author(s):  
Samyak Sadanand Shravasti

Abstract: Phishing occurs when people's personal information is stolen via email, phone, or text communications. In Smishing Short Message Service (SMS) is used for cyber-attacks, Smishing is a type of theft of sensitive information. People are more likely to give personal information such as account details and passwords when they receive SMS messages. This data could be used to steal money or personal information from a person or a company. As a result, Smishing is a critical issue to consider. The proposed model uses an Artificial Intelligence to detect smishing. Analysing a SMS and successfully detecting Smishing is possible. Finally, we evaluate and analyse our proposed model to show its efficacy. Keywords: Phishing, Smishing, Artificial Intelligence, LSTM, RNN


2021 ◽  
pp. 136943322110509
Author(s):  
Zhiguo Shi ◽  
Cheng Ning Loong ◽  
Jiazeng Shan

This study proposes an equivalent circuit model to simulate the mechanical behavior and frequency-dependent characteristic of eddy current (EC) damping, with the validations from multi-physics finite element (FE) modeling and dynamic testing. The equivalent circuit model is first presented with a theoretical expression of the EC damping force. Then, the transient analysis with an ANSYS-based FE model of an EC damper is performed. The time-history forces from the FE model are compared with that from the proposed equivalent circuit model. The favorable agreement indicates that the proposed model can simulate the nonlinear behavior of EC damping under different excitation scenarios. A noncontact and friction-free planar EC damper is designed, and its dynamic behavior is measured by employing shake table testing. The experimental observations can be reproduced by the proposed equivalent circuit model with reasonable accuracy and reliability. The proposed equivalent circuit model is compared with the classical viscous model and the higher-order fractional model using a complex EC damper simulated in ANSYS to show the advantages of the proposed model regarding model simplicity and prediction accuracy. A single-degree-of-freedom (SDOF) structure with different EC damping models is further analyzed to illustrate the need for accurate EC damping modeling.


Sign in / Sign up

Export Citation Format

Share Document