Distribution optimization of electric vehicle load space based on interval type-ii fuzzy logic algorithm

Author(s):  
Zhongwei Zhang

The disorderly charging behavior of a mobile compound, large-scale electric vehicles in time and space will not only cause the phenomenon of “compound the peak” of the electric load, increase of the peak-valley difference of the grid, and may cause partial overcharge and line congestion and other issues. Relying on the Interval Type-II fuzzy logic algorithm, the two optimization algorithm of interval type 2 fuzzy logic algorithm and genetic algorithm are compared from the space point of view, based on the research on the optimization problem of electric vehicle charging load space allocation, through the results of calculation examples in this paper. Practical results have verified the effectiveness and feasibility of the algorithm, and the interval two fuzzy logic algorithm has high practicability.

Author(s):  
Pablo Garcia-Trivino ◽  
Juan P. Torreglosa ◽  
Luis M. Fernandez-Ramirez ◽  
Francisco Jurado

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3473 ◽  
Author(s):  
Szulczyński ◽  
Gębicki

Measurement and monitoring of air quality in terms of odor nuisance is an important problem. From a practical point of view, it would be most valuable to directly link the odor intensity with the results of analytical air monitoring. Such a solution is offered by electronic noses, which thanks to the possibility of holistic analysis of the gas sample, allow estimation of the odor intensity of the gas mixture. The biggest problem is the occurrence of odor interactions between the mixture components. For this reason, methods that can take into account the interaction between components of the mixture are used to analyze data from the e-nose. In the presented study, the fuzzy logic algorithm was proposed for determination of odor intensity of binary mixtures of eight odorants: n-Hexane, cyclohexane, toluene, o-xylene, trimethylamine, triethylamine, α-pinene, and β-pinene. The proposed algorithm was compared with four theoretical perceptual models: Euclidean additivity, vectorial additivity, U model, and UPL model.


2013 ◽  
Vol 443 ◽  
pp. 273-278 ◽  
Author(s):  
Ceng Ceng Hao ◽  
Yue Jin Tang ◽  
Jing Shi

Large scale electric vehicles integration into power grid, as nonlinear loads, will pose inevitable impacts on the operation of power system, one of which the harmonic problem will affect the power quality greatly. Firstly, the article analyzes the characteristics of harmonic caused by electric vehicle charging. And then, the harmonic flow distribution is analyzed based on the IEEE standard node systems. During transient analyses, the electric vehicle charging stations connected to electric grid are represented as harmonic sources. Results show that structure and voltage grade of electric grid, capacity and access points of electric vehicle charging load will have different effects on harmonic problem. At last, a few conclusions are given for connecting electric vehicles to electric grid.


2021 ◽  
Vol 11 (22) ◽  
pp. 10962
Author(s):  
Theron Smith ◽  
Joseph Garcia ◽  
Gregory Washington

This paper presents a plug-in electric vehicle (PEV) charging control algorithm, Adjustable Real-Time Valley Filling (ARVF), to improve PEV charging and minimize adverse effects from uncontrolled PEV charging on the grid. ARVF operates in real time, adjusts to sudden deviations between forecasted and actual baseloads, and uses fuzzy logic to deliver variable charging rates between 1.9 and 7.2 kW. Fuzzy logic is selected for this application because it can optimize nonlinear systems, operate in real time, scale efficiently, and be computationally fast, making ARVF a robust algorithm for real-world applications. In addition, this study proves that when the forecasted and actual baseload vary by more than 20%, its real-time capability is more advantageous than algorithms that use optimization techniques on predicted baseload data.


2012 ◽  
Vol 608-609 ◽  
pp. 1582-1586
Author(s):  
Jian Wang ◽  
Kui Hua Wu ◽  
Feng Wang ◽  
Kui Zhong Wu ◽  
Zhi Zhen Liu

The large scale development of electric vehicle will have both benefits and potential stresses on power grid. It is shown that uncoordinated charging of EVs’ on the grid will produce series of problems, while intelligent charging can improve the operation of the power grid. In this study, based on several scenarios of charging modes, such as plug and charge, night charging and intelligent charging, the corresponding EV load models have been established. Therefore, an analysis is performed for the load characteristics of Shandong power grid to demonstrate the impacts of different EV charging scenarios. The results demonstrate that rational utilization of EVs’ load and energy storage property can help to decrease the maximum load of grid and the peak-valley difference, to stable load, and to raise the utilization of the power facilities.


Sign in / Sign up

Export Citation Format

Share Document