Technical and economic optimization of natural gas transmission network operation to balance node delivery flow rate and operation cost

2020 ◽  
pp. 1-22
Author(s):  
Jun Zhou ◽  
Jinghong Peng ◽  
Guangchuan Liang ◽  
Chuan Chen ◽  
Xuan Zhou ◽  
...  

Natural gas transmission network is the major facility connecting the upstream gas sources and downstream consumers. In this paper, a multi-objective optimization model is built to find the optimum operation scheme of the natural gas transmission network. This model aims to balance two conflicting optimization objective named maximum a specified node delivery flow rate and minimum compressor station power consumption cost. The decision variables involve continuous and discrete variables, including node delivery flow rate, number of running compressors and their rotational speed. Besides, a series of equality and inequality constraints for nodes, pipelines and compressor stations are introduced to control the optimization results. Then, the developed optimization model is applied to a practical large tree-topology gas transmission network, which is 2,229 km in length with 7 compressor stations, 2 gas injection nodes and 20 gas delivery nodes. The ɛ-constraint method and GAMS/DICOPT solver are adopted to solve the bi-objective optimization model. The optimization result obtained is a set of Pareto optimal solutions. To verify the validity of the proposed method, the optimization results are compared with the actual operation scheme. Through the comparison of different Pareto optimal solutions, the variation law of objective functions and decision variables between different optimal solutions are clarified. Finally, sensitivity analyses are also performed to determine the influence of operating parameter changes on the optimization results.

2015 ◽  
Vol 60 (2) ◽  
pp. 1037-1043
Author(s):  
Ł. Szparaga ◽  
P. Bartosik ◽  
A. Gilewicz ◽  
J. Ratajski

Abstract In the paper was proposed optimization procedure supporting the prototyping of the geometry of multi-module CrN/CrCN coatings, deposited on substrates from 42CrMo4 steel, in respect of mechanical properties. Adopted decision criteria were the functions of the state of internal stress and strain in the coating and substrate, caused by external mechanical loads. Using developed optimization procedure the set of optimal solutions (Pareto-optimal solutions) of coatings geometry parameters, due to the adopted decision criteria was obtained. For the purposes of analysis of obtained Pareto-optimal solutions, their mutual distance in the space of criteria and decision variables were calculated, which allowed to group solutions in the classes. Also analyzed the number of direct neighbors of Pareto-optimal solutions for the purposes of assessing the stability of solutions.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 839
Author(s):  
Ibrahim M. Abu-Reesh

Microbial fuel cells (MFCs) are a promising technology for bioenergy generation and wastewater treatment. Various parameters affect the performance of dual-chamber MFCs, such as substrate flow rate and concentration. Performance can be assessed by power density ( PD ), current density ( CD ) production, or substrate removal efficiency ( SRE ). In this study, a mathematical model-based optimization was used to optimize the performance of an MFC using single- and multi-objective optimization (MOO) methods. Matlab’s fmincon and fminimax functions were used to solve the nonlinear constrained equations for the single- and multi-objective optimization, respectively. The fminimax method minimizes the worst-case of the two conflicting objective functions. The single-objective optimization revealed that the maximum PD ,   CD , and SRE were 2.04 W/m2, 11.08 A/m2, and 73.6%, respectively. The substrate concentration and flow rate significantly impacted the performance of the MFC. Pareto-optimal solutions were generated using the weighted sum method for maximizing the two conflicting objectives of PD and CD in addition to PD and SRE   simultaneously. The fminimax method for maximizing PD and CD showed that the compromise solution was to operate the MFC at maximum PD conditions. The model-based optimization proved to be a fast and low-cost optimization method for MFCs and it provided a better understanding of the factors affecting an MFC’s performance. The MOO provided Pareto-optimal solutions with multiple choices for practical applications depending on the purpose of using the MFCs.


2015 ◽  
Vol 20 (3) ◽  
pp. 329-345 ◽  
Author(s):  
Suvasis Nayak ◽  
Akshay Ojha

This paper illustrates a procedure to generate pareto optimal solutions of multi-objective linear fractional programming problem (MOLFPP) with closed interval coefficients of decision variables both in objective and constraint functions. E-constraint method is applied to produce pareto optimal solutions comprising most preferred solution to satisfy all objectives. A numerical example is solved using our proposed method and the result so obtained is compared with that of fuzzy programming which justifies the efficiency and authenticity of the proposed method.


2017 ◽  
Vol 17 (5) ◽  
pp. 1316-1324 ◽  
Author(s):  
Hamzeh Noor ◽  
Somayeh Fazli ◽  
Mohammad Rostami ◽  
Ali Bagherian Kalat

The effort to control sediment yield at watershed scale is an ongoing challenge that needs to take into account trade-offs between two conflicting objective functions, i.e. economic and hydrologic criteria. Therefore, researchers have coupled hydrologic and multi-objective optimization models to find Pareto-optimal solutions. However, very limited studies have been conducted to analyse the cost-effectiveness (C/E) of scenarios obtained in the Pareto-front optimal. This could provide new information leading to effective watershed management. Therefore, in the present study, the Soil and Water Assessment Tool (SWAT) was used to simulate sediment yield under different combinations of best management practices (BMPs) and was coupled with the Non-dominated Sorting Genetic Algorithm (NSGA-II). The model attends to providing the Pareto-optimal solutions by minimizing the costs of BMPs and maximizing sediment reduction. The results of the application of the cost-effective optimization model in Mehran watershed, Iran, showed that the solutions in the Pareto-optimal front reduce sediment yield between 2% and 40.5% from baseline at costs of between $6,500 and $72,100, respectively. Finally, comparison of four sediment reduction solutions (i.e. 10%, 20%, 30%, and 40%) showed that the total cost and C/E ratio of solutions increased as the sediment reduction criteria increased.


2009 ◽  
Vol 26 (06) ◽  
pp. 735-757 ◽  
Author(s):  
F. MIGUEL ◽  
T. GÓMEZ ◽  
M. LUQUE ◽  
F. RUIZ ◽  
R. CABALLERO

The generation of Pareto optimal solutions for complex systems with multiple conflicting objectives can be easier if the problem can be decomposed and solved as a set of smaller coordinated subproblems. In this paper, a new decomposition-coordination method is proposed, where the global problem is partitioned into subsystems on the basis of the connection structure of the mathematical model, assigning a relative importance to each of them. In order to obtain Pareto optimal solutions for the global system, the aforementioned subproblems are coordinated taking into account their relative importance. The scheme that has been developed is an iterative one, and the global efficient solutions are found through a continuous information exchange process between the coordination level (upper level) and the subsystem level (lower level). Computational experiments on several randomly generated problem instances show that the suggested algorithm produces efficient solutions within reasonable computational times.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mariana Souza Rocha ◽  
Luiz Célio Souza Rocha ◽  
Marcia Barreto da Silva Feijó ◽  
Paula Luiza Limongi dos Santos Marotta ◽  
Samanta Cardozo Mourão

PurposeThe mucilage of the Linum usitatissimum L. seed (Linseed) is one of the natural mucilages that presents a great potential to provide a food hydrocolloid with potential applications in both food and pharmaceutical industries. To increase the yield and quality of linseed oil during its production process, it is necessary to previously extract its polysaccharides. Because of this, flax mucilage production can be made viable as a byproduct of oil extraction process, which is already a product of high commercial value consolidated in the market. Thus, the purpose of this work is to optimize the mucilage extraction process of L. usitatissimum L. using the normal-boundary intersection (NBI) multiobjective optimization method.Design/methodology/approachCurrently, the variables of the process of polysaccharide extraction from different sources are optimized using the response surface methodology. However, when the optimal points of the responses are conflicting it is necessary to study the best conditions to achieve a balance between these conflicting objectives (trade-offs) and to explore the available options it is necessary to formulate an optimization problem with multiple objectives. The multiobjective optimization method used in this work was the NBI developed to find uniformly distributed and continuous Pareto optimal solutions for a nonlinear multiobjective problem.FindingsThe optimum extraction point to obtain the maximum fiber concentration in the extracted material was pH 3.81, temperature of 46°C, time of 13.46 h. The maximum extraction yield of flaxseed was pH 6.45, temperature of 65°C, time of 14.41 h. This result confirms the trade-off relationship between the objectives. NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows to analyze the behavior of the trade-off relationship. Thus, the decision-maker can set extraction conditions to achieve desired characteristics in mucilage.Originality/valueThe novelty of this paper is to confirm the existence of a trade-off relationship between the productivity parameter (yield) and the quality parameter (fiber concentration in the extracted material) during the flaxseed mucilage extraction process. The NBI approach was able to find uniformly distributed Pareto optimal solutions, which allows us to analyze the behavior of the trade-off relationship. This allows the decision-making to the extraction conditions according to the desired characteristics of the final product, thus being able to direct the extraction for the best applicability of the mucilage.


Author(s):  
Paul Cousens ◽  
Chas Jandu

As part of an important project to reinforce the natural gas transmission network, a new pipeline has been constructed to transport natural gas from a major UK LNG storage facility into the national transmission system. The project involved the installation of several sections by trenchless methods, namely auger boring for a number of road crossings and significant lengths of horizontal directional drilling (HDD) beneath railroads, canals and marshland. The installation of pipelines using trenchless techniques such as HDD continues to increase in popularity. The various methods available offer advantages over traditional open cut techniques, in particular much reduced disruption during the construction of road and rail crossings. Furthermore, increased awareness and responsibility towards the environment leads us to seek installation methods that cause the least disruption at the surface and have the least impact to the environment. It was required to assess the proposed crossing designs against acceptable stress limits set out in company specifications and against the requirements of UK design code IGE/TD/1 Edition 4 [1], which requires that ‘additional loads’ such as soil loadings, thermal loads, settlement and traffic loading are accounted for within the stress calculations. However, it does not stipulate the sources of such equations and the pipeline engineer must rely on other methods and published sources of information. This paper presents the method used to analyse those sections of the new pipeline installed by auger boring and HDD focusing on the methods and formulae used to calculate the stresses in the pipeline from all loading sources.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 250 ◽  
Author(s):  
Yahui Li ◽  
Yang Li

To coordinate the economy, security and environment protection in the power system operation, a two-step many-objective optimal power flow (MaOPF) solution method is proposed. In step 1, it is the first time that knee point-driven evolutionary algorithm (KnEA) is introduced to address the MaOPF problem, and thereby the Pareto-optimal solutions can be obtained. In step 2, an integrated decision analysis technique is utilized to provide decision makers with decision supports by combining fuzzy c-means (FCM) clustering and grey relational projection (GRP) method together. In this way, the best compromise solutions (BCSs) that represent decision makers’ different, even conflicting, preferences can be automatically determined from the set of Pareto-optimal solutions. The primary contribution of the proposal is the innovative application of many-objective optimization together with decision analysis for addressing MaOPF problems. Through examining the two-step method via the IEEE 118-bus system and the real-world Hebei provincial power system, it is verified that our approach is suitable for addressing the MaOPF problem of power systems.


Sign in / Sign up

Export Citation Format

Share Document