Analysis of age invariant face recognition using quadratic support vector machine-principal component analysis

2021 ◽  
pp. 1-15
Author(s):  
Ashutosh Dhamija ◽  
R. B. Dubey

Face recognition is one of the most challenging and demanding field, since aging affects the shape and structure of the face. Age invariant face recognition is a relatively new area in face recognition studies, which in real-world implementations recently gained considerable interest due to its huge potential and relevance. The Age invariant face recognition, however, is still evolving and evolving, providing substantial potential for further study and progress inaccuracy. Major issues with the age invariant face recognition involve major variations in appearance, texture, and facial features and discrepancies in position and illumination. These problems restrict the age invariant face recognition systems developed and intensify identity recognition tasks. To address this problem, a new technique Quadratic Support Vector Machine- Principal Component Analysis (QSVM-PCA) is introduced. Experimental results suggest that our QSVM-PCA achieved better results especially when the age range is larger than other existing techniques of face-aging dataset of FGNET. The maximum accuracy achieved by demonstrated methodology is 98.87%.

2020 ◽  
Author(s):  
ASHUTOSH DHAMIJA ◽  
R.B DUBEY

Abstract Forage, face recognition is one of the most demanding field challenges, since aging affects the shape and structure of the face. Age invariant face recognition (AIFR) is a relatively new area in face recognition studies, which in real-world implementations recently gained considerable interest due to its huge potential and relevance. The AIFR, however, is still evolving and evolving, providing substantial potential for further study and progress inaccuracy. Major issues with the AIFR involve major variations in appearance, texture, and facial features and discrepancies in position and illumination. These problems restrict the AIFR systems developed and intensify identity recognition tasks. To address this problem, a new technique Quadratic Support Vector Machine- Principal Component Analysis (QSVM-PCA) is introduced. Experimental results suggest that our QSVM-PCA achieved better results especially when the age range is larger than other existing techniques of face-aging datasets of FGNET. The maximum accuracy achieved by demonstrated methodology is 98.87%.


2019 ◽  
Vol 3 (2) ◽  
pp. 80-84 ◽  
Author(s):  
Mustafa H. Mohammed Alhabib ◽  
Mustafa Zuhaer Nayef Al-Dabagh ◽  
Firas H. AL-Mukhtar ◽  
Hussein Ibrahim Hussein

Facial analysis has evolved to be a process of considerable importance due to its consequence on the safety and security, either individually or generally on the society level, especially in personal identification. The paper in hand applies facial identification on a facial image dataset by examining partial facial images before allocating a set of distinctive characteristics to them. Extracting the desired features from the input image is achieved by means of wavelet transform. Principal component analysis is used for feature selection, which specifies several aspects in the input image; these features are fed to two stages of classification using a support vector machine and K-nearest neighborhood to classify the face. The images used to test the strength of the suggested method are taken from the well-known (Yale) database. Test results showed the eligibility of the system when it comes to identify images and assign the correct face and name.


Sign in / Sign up

Export Citation Format

Share Document