New distances for dual hesitant fuzzy sets and their application in clustering algorithm

2021 ◽  
pp. 1-12
Author(s):  
Yanxia Wei ◽  
Qinghai Wang

Compared to hesitant fuzzy sets and intuitionistic fuzzy sets, dual hesitant fuzzy sets can model problems in the real world more comprehensively. Dual hesitant fuzzy sets explicitly show a set of membership degrees and a set of non-membership degrees, which also imply a set of important data: hesitant degrees.The traditional definition of distance between dual hesitant fuzzy sets only considers membership degree and non-membership degree, but hesitant degree should also be taken into account. To this end, using these three important data sets (membership degree, non-membership degree and hesitant degree), we first propose a variety of new distance measurements (the generalized normalized distance, generalized normalized Hausdorff distance and generalized normalized hybrid distance) for dual hesitant fuzzy sets in this paper, based on which the corresponding similarity measurements can be obtained. In these distance definitions, membership degree, non-membership-degree and hesitant degree are of equal importance. Second, we propose a clustering algorithm by using these distances in dual hesitant fuzzy information system. Finally, a numerical example is used to illustrate the performance and effectiveness of the clustering algorithm. Accordingly, the results of clustering in dual hesitant fuzzy information system are compared using the distance measurements mentioned in the paper, which verifies the utility and advantage of our proposed distances. Our work provides a new way to improve the performance of clustering algorithms in dual hesitant fuzzy information systems.

2018 ◽  
Vol 27 (2) ◽  
pp. 163-182 ◽  
Author(s):  
Ilanthenral Kandasamy

AbstractNeutrosophy (neutrosophic logic) is used to represent uncertain, indeterminate, and inconsistent information available in the real world. This article proposes a method to provide more sensitivity and precision to indeterminacy, by classifying the indeterminate concept/value into two based on membership: one as indeterminacy leaning towards truth membership and the other as indeterminacy leaning towards false membership. This paper introduces a modified form of a neutrosophic set, called Double-Valued Neutrosophic Set (DVNS), which has these two distinct indeterminate values. Its related properties and axioms are defined and illustrated in this paper. An important role is played by clustering in several fields of research in the form of data mining, pattern recognition, and machine learning. DVNS is better equipped at dealing with indeterminate and inconsistent information, with more accuracy, than the Single-Valued Neutrosophic Set, which fuzzy sets and intuitionistic fuzzy sets are incapable of. A generalised distance measure between DVNSs and the related distance matrix is defined, based on which a clustering algorithm is constructed. This article proposes a Double-Valued Neutrosophic Minimum Spanning Tree (DVN-MST) clustering algorithm, to cluster the data represented by double-valued neutrosophic information. Illustrative examples are given to demonstrate the applications and effectiveness of this clustering algorithm. A comparative study of the DVN-MST clustering algorithm with other clustering algorithms like Single-Valued Neutrosophic Minimum Spanning Tree, Intuitionistic Fuzzy Minimum Spanning Tree, and Fuzzy Minimum Spanning Tree is carried out.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 432
Author(s):  
Aziz Khan ◽  
Shougi S. Abosuliman ◽  
Saleem Abdullah ◽  
Muhammad Ayaz

Spherical hesitant fuzzy sets have recently become more popular in various fields. It was proposed as a generalization of picture hesitant fuzzy sets and Pythagorean hesitant fuzzy sets in order to deal with uncertainty and fuzziness information. Technique of Aggregation is one of the beneficial tools to aggregate the information. It has many crucial application areas such as decision-making, data mining, medical diagnosis, and pattern recognition. Keeping in view the importance of logarithmic function and aggregation operators, we proposed a novel algorithm to tackle the multi-attribute decision-making (MADM) problems. First, novel logarithmic operational laws are developed based on the logarithmic, t-norm, and t-conorm functions. Using these operational laws, we developed a list of logarithmic spherical hesitant fuzzy weighted averaging/geometric aggregation operators to aggregate the spherical hesitant fuzzy information. Furthermore, we developed the spherical hesitant fuzzy entropy to determine the unknown attribute weight information. Finally, the design principles for the spherical hesitant fuzzy decision-making have been developed, and a practical case study of hotel recommendation based on the online consumer reviews has been taken to illustrate the validity and superiority of presented approach. Besides this, a validity test is conducted to reveal the advantages and effectiveness of developed approach. Results indicate that the proposed method is suitable and effective for the decision process to evaluate their best alternative.


Author(s):  
Juan Song ◽  
Zhiwei Ni ◽  
Feifei Jin ◽  
Ping Li ◽  
Wenying Wu

AbstractAs an enhanced version of probabilistic hesitant fuzzy sets and dual hesitant fuzzy sets, probabilistic dual hesitant fuzzy sets (PDHFSs) combine probabilistic information with the membership degree and non-membership degree, which can describe decision making information more reasonably and comprehensively. Based on PDHFSs, this paper investigates the approach to group decision making (GDM) based on incomplete probabilistic dual hesitant fuzzy preference relations (PDHFPRs). First, the definitions of order consistency and multiplicative consistency of PDHFPRs are given. Then, for the problem that decision makers (DMs) cannot provide the reasonable associated probabilities of probabilistic dual hesitant fuzzy elements (PDHFEs), the calculation method of the associated probability is given by using an optimal programming model. Furthermore, the consistency level for PDHFPRs is tested according to the weighted consistency index defined by the risk attitude of DMs. In addition, a convergent iterative algorithm is proposed to enhance the unacceptable consistent PDHFPRs’ consistency level. Finally, a GDM approach with incomplete PDHFPRs is established to obtain the ranking of the alternatives. The availability and rationality of the proposed decision making approach are demonstrated by analyzing the impact factors of haze weather.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Arindam Chaudhuri

Intuitionistic fuzzy sets (IFSs) provide mathematical framework based on fuzzy sets to describe vagueness in data. It finds interesting and promising applications in different domains. Here, we develop an intuitionistic fuzzy possibilistic C means (IFPCM) algorithm to cluster IFSs by hybridizing concepts of FPCM, IFSs, and distance measures. IFPCM resolves inherent problems encountered with information regarding membership values of objects to each cluster by generalizing membership and nonmembership with hesitancy degree. The algorithm is extended for clustering interval valued intuitionistic fuzzy sets (IVIFSs) leading to interval valued intuitionistic fuzzy possibilistic C means (IVIFPCM). The clustering algorithm has membership and nonmembership degrees as intervals. Information regarding membership and typicality degrees of samples to all clusters is given by algorithm. The experiments are performed on both real and simulated datasets. It generates valuable information and produces overlapped clusters with different membership degrees. It takes into account inherent uncertainty in information captured by IFSs. Some advantages of algorithms are simplicity, flexibility, and low computational complexity. The algorithm is evaluated through cluster validity measures. The clustering accuracy of algorithm is investigated by classification datasets with labeled patterns. The algorithm maintains appreciable performance compared to other methods in terms of pureness ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-34
Author(s):  
Tahir Mahmood ◽  
Zeeshan Ali ◽  
Harish Garg ◽  
Lemnaouar Zedam ◽  
Ronnason Chinram

The theory of complex dual type-2 hesitant fuzzy sets (CDT-2HFSs) is a blend of two different modifications of fuzzy sets (FSs), called complex fuzzy sets (CFSs) and dual type-2 hesitant fuzzy sets (DT-2HFSs). CDT-2HFS is a proficient technique to cope with unpredictable and awkward information in realistic decision problems. CDT-2HFS is composed of the grade of truth and the grade of falsity, and the grade of truth (also for grade of falsity) contains the grade of primary and secondary parts in the form of polar coordinates with the condition that the sum of the maximum of the real part (also for the imaginary part) of the primary grade (also for the secondary grade) cannot exceed the unit interval [0, 1]. The aims of this manuscript are to discover the novel approach of CDT-2HFS and its operational laws. These operational laws are also justified with the help of an example. Additionally, based on a novel CDT-2HFS, we explored the correlation coefficient (CC) and entropy measures (EMs), and their special cases are also discussed. TOPSIS method based on CDT-2HFS is also explored. Then, we applied our explored measures based on CDT-2HFSs in the environment of the TOPSIS method, medical diagnosis, pattern recognition, and clustering algorithm to cope with the awkward and complicated information in realistic decision issues. Finally, some numerical examples are given to examine the proficiency and validity of the explored measures. Comparative analysis, advantages, and graphical interpretation of the explored measures with some other existing measures are also discussed.


2021 ◽  
pp. 1-16
Author(s):  
Jia-Jia Zhou ◽  
Xiang-Yang Li

 In present paper, we put forward four types of hesitant fuzzy β covering rough sets (HFβCRSs) by uniting covering based rough sets (CBRSs) and hesitant fuzzy sets (HFSs). We firstly originate hesitant fuzzy β covering of the universe, which can induce two types of neighborhood to produce four types of HFβCRSs. We then make further efforts to probe into the properties of each type of HFβCRSs. Particularly, the relationships of each type of rough approximation operators w.r.t. two different hesitant fuzzy β coverings are groped. Moreover, the relationships between our proposed models and some other existing related models are established. Finally, we give an application model, an algorithm, and an illustrative example to elaborate the applications of HFβCRSs in multi-attribute decision making (MADM) problems. By making comparative analysis, the HFβCRSs models proposed by us are more general than the existing models of Ma and Yang and are more applicable than the existing models of Ma and Yang when handling hesitant fuzzy information.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1381 ◽  
Author(s):  
Anam Luqman ◽  
Muhammad Akram ◽  
Ahmad N. Al-Kenani ◽  
José Carlos R. Alcantud

The paradigm shift prompted by Zadeh’s fuzzy sets in 1965 did not end with the fuzzy model and logic. Extensions in various lines have produced e.g., intuitionistic fuzzy sets in 1983, complex fuzzy sets in 2002, or hesitant fuzzy sets in 2010. The researcher can avail himself of graphs of various types in order to represent concepts like networks with imprecise information, whether it is fuzzy, intuitionistic, or has more general characteristics. When the relationships in the network are symmetrical, and each member can be linked with groups of members, the natural concept for a representation is a hypergraph. In this paper we develop novel generalized hypergraphs in a wide fuzzy context, namely, complex intuitionistic fuzzy hypergraphs, complex Pythagorean fuzzy hypergraphs, and complex q-rung orthopair fuzzy hypergraphs. Further, we consider the transversals and minimal transversals of complex q-rung orthopair fuzzy hypergraphs. We present some algorithms to construct the minimal transversals and certain related concepts. As an application, we describe a collaboration network model through a complex q-rung orthopair fuzzy hypergraph. We use it to find the author having the most outstanding collaboration skills using score and choice values.


2021 ◽  
pp. 1-22
Author(s):  
Baolin Li ◽  
Lihua Yang ◽  
Jie Qian

In practice, picture hesitant fuzzy sets (PHFSs) combining the picture fuzzy sets (PFSs) and hesitant fuzzy sets (HFSs) are suitable to represent more complex multi-criteria decision-making (MCDM) information. The power heronian (PH) operators, which have the merits of power average (PA) and heronian mean (HM) operators, are extended to the environment of PHFSs in this article. First, some algebraic operations of picture hesitant fuzzy numbers (PHFNs), comparative functions and distance measure are introduced. Second, two novel operators, called as picture hesitant fuzzy weighted power heronian (PHFWPH) operator and picture hesitant fuzzy weighted geometric power heronian (PHFWGPH) operator, are defined. Meanwhile, some desirable characteristics and special instances of two operators are investigated as well. Third, a novel MCDM approach applying the proposed PH operators to handle PHFNs is explored. Lastly, to indicate the effectiveness of this novel method, an example regarding MCDM problem is conducted, as well as sensitivity and comparison analysis.


Author(s):  
Momotaz Begum ◽  
Bimal Chandra Das ◽  
Md. Zakir Hossain ◽  
Antu Saha ◽  
Khaleda Akther Papry

<p>Manipulating high-dimensional data is a major research challenge in the field of computer science in recent years. To classify this data, a lot of clustering algorithms have already been proposed. Kohonen self-organizing map (KSOM) is one of them. However, this algorithm has some drawbacks like overlapping clusters and non-linear separability problems. Therefore, in this paper, we propose an improved KSOM (I-KSOM) to reduce the problems that measures distances among objects using EISEN Cosine correlation formula. So far as we know, no previous work has used EISEN Cosine correlation distance measurements to classify high-dimensional data sets. To the robustness of the proposed KSOM, we carry out the experiments on several popular datasets like Iris, Seeds, Glass, Vertebral column, and Wisconsin breast cancer data sets. Our proposed algorithm shows better result compared to the existing original KSOM and another modified KSOM in terms of predictive performance with topographic and quantization error.</p>


Sign in / Sign up

Export Citation Format

Share Document