Cubic bipolar fuzzy Dombi averaging aggregation operators with application to multi-criteria decision-making

2021 ◽  
pp. 1-21
Author(s):  
Muhammad Riaz ◽  
Anam Habib ◽  
Muhammad Aslam

 A cubic bipolar fuzzy set (CBFS) is a new approach in computational intelligence and decision-making under uncertainty. This model is the generalization of bipolar fuzzy sets to deal with two-sided contrasting features which can describe the information with a bipolar fuzzy number and an interval-valued bipolar fuzzy number simultaneously. In this paper, the Dombi’s operations are analyzed for information aggregation of cubic bipolar fuzzy numbers (CBFNs). The Dombi’s operations carry the advantage of more pliability and reliability due to the existence of their operational parameters. Owing to the pliable nature of Dombi’s operators, this research work introduces new aggregation operators named as cubic bipolar fuzzy Dombi weighted averaging (CBFDWA) operator and cubic bipolar fuzzy Dombi ordered weighted averaging (CBFDOWA) operator with ℙ -order and ℝ -order, respectively. Additionally, this paper presents some significant characteristics of suggested operators including, idempotency, boundedness and monotonicity. Moreover, a robust multi-criteria decision making (MCDM) technique is developed by using ℙ -CBFDWA and ℝ -CBFDWA operators. Based on the suggested operators a practical application is demonstrated towards MCDM under uncertainty. The comparison analysis of suggested Dombi’s operators with existing operators is also given to discuss the rationality, efficiency and applicability of these operators.

Author(s):  
Bhagawati Prasad Joshi ◽  
Abhay Kumar

The fusion of multidimensional intuitionistic fuzzy information plays an important part in decision making processes under an intuitionistic fuzzy environment. In this chapter, it is observed that existing intuitionistic fuzzy Einstein hybrid aggregation operators do not follow the idempotency and boundedness. This leads to sometimes illogical and even absurd results to the decision maker. Hence, some new intuitionistic fuzzy Einstein hybrid aggregation operators such as the new intuitionistic fuzzy Einstein hybrid weighted averaging (IFEHWA) and the new intuitionistic fuzzy Einstein hybrid weighted geometric (IFEHWG) were developed. The new IFEHWA and IFEHWG operators can weigh the arguments as well as their ordered positions the same as the intuitionistic fuzzy Einstein hybrid aggregation operators do. Further, it is validated that the defined operators are idempotent, bounded, monotonic and commutative. Then, based on the developed approach, a multi-criteria decision-making (MCDM) procedure is given. Finally, a numerical example is conducted to demonstrate the proposed method effectively.


2018 ◽  
Vol 29 (1) ◽  
pp. 154-171 ◽  
Author(s):  
Muhammad Sajjad Ali Khan ◽  
Saleem Abdullah ◽  
Asad Ali ◽  
Khaista Rahman

Abstract In this paper, we introduce the concept of the Pythagorean hesitant fuzzy set (PHFS), which is the generalization of the intuitionistic hesitant fuzzy set under the restriction that the square sum of its membership degrees is ≤1. In decision making with PHFSs, aggregation operators play a key role because they can be used to synthesize multidimensional evaluation values represented as Pythagorean hesitant fuzzy values into collective values. Under PHFS environments, Pythagorean hesitant fuzzy ordered weighted averaging and Pythagorean fuzzy ordered weighted geometric operators are used to aggregate the Pythagorean hesitant fuzzy values. The main advantage of these operators is that they provide more accurate and valuable results. Furthermore, these operators are applied to decision-making problems in which experts provide their preferences in the Pythagorean hesitant fuzzy environment to show the validity, practicality, and effectiveness of the new approach. Finally, we compare the proposed approach to the existing methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jun Liu ◽  
Ning Zhou ◽  
Li-Hua Zhuang ◽  
Ning Li ◽  
Fei-Fei Jin

Under the interval-valued hesitant fuzzy information environment, we investigate a multiattribute group decision making (MAGDM) method with continuous entropy weights and improved Hamacher information aggregation operators. Firstly, we introduce the axiomatic definition of entropy for interval-valued hesitant fuzzy elements (IVHFEs) and construct a continuous entropy formula on the basis of the continuous ordered weighted averaging (COWA) operator. Then, based on the Hamachert-norm andt-conorm, the adjusted operational laws for IVHFEs are defined. In order to aggregate interval-valued hesitant fuzzy information, some new improved interval-valued hesitant fuzzy Hamacher aggregation operators are investigated, including the improved interval-valued hesitant fuzzy Hamacher ordered weighted averaging (I-IVHFHOWA) operator and the improved interval-valued hesitant fuzzy Hamacher ordered weighted geometric (I-IVHFHOWG) operator, the desirable properties of which are discussed. In addition, the relationship among these proposed operators is analyzed in detail. Applying the continuous entropy and the proposed operators, an approach to MAGDM is developed. Finally, a numerical example for emergency operating center (EOC) selection is provided, and comparative analyses with existing methods are performed to demonstrate that the proposed approach is both valid and practical to deal with group decision making problems.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1187 ◽  
Author(s):  
Khan ◽  
Abdullah ◽  
Mahmood ◽  
Naeem ◽  
Rashid

The interval neutrosophic set (INS) can make it easier to articulate incomplete, indeterminate, and inconsistent information, and the Schweizer-Sklar (Sh-Sk) t-norm (tm) and t-conorm (tcm) can make the information aggregation process more flexible due to a variable parameter. To take full advantage of INS and Sh-Sk operations, in this article, we expanded the Sh-Sk and to IN numbers (INNs) in which the variable parameter takes values from , develop the Sh-Sk operational laws for INNs and discussed its desirable properties. After that, based on these newly developed operational laws, two types of generalized prioritized aggregation operators are established, the generalized IN Sh-Sk prioritized weighted averaging (INSh-SkPWA) operator and the generalized IN Sh-Sk prioritized weighted geometric (INSh-SkPWG) operator. Additionally, we swot a number of valuable characteristics of these intended aggregation operators (AGOs) and created two novel decision-making models to match with multiple-attribute decision-making (MADM) problems under IN information established on INSh-SkPWA and INSh-SkPRWG operators. Finally, an expressive example regarding evaluating the technological innovation capability for the high-tech enterprises is specified to confirm the efficacy of the intended models.


Author(s):  
J. M. MERIGÓ ◽  
M. CASANOVAS ◽  
L. MARTÍNEZ

In this paper, we develop a new approach for decision making with Dempster-Shafer theory of evidence by using linguistic information. We suggest the use of different types of linguistic aggregation operators in the model. We then obtain as a result, the belief structure — linguistic ordered weighted averaging (BS-LOWA), the BS — linguistic hybrid averaging (BS-LHA) and a wide range of particular cases. Some of their main properties are studied. Finally, we provide an illustrative example that shows the different results obtained by using different types of linguistic aggregation operators in the new approach.


Algorithms ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 120 ◽  
Author(s):  
Wenying Wu ◽  
Ying Li ◽  
Zhiwei Ni ◽  
Feifei Jin ◽  
Xuhui Zhu

Based on the probabilistic interval-valued hesitant fuzzy information aggregation operators, this paper investigates a novel multi-attribute group decision making (MAGDM) model to address the serious loss of information in a hesitant fuzzy information environment. Firstly, the definition of probabilistic interval-valued hesitant fuzzy set will be introduced, and then, using Archimedean norm, some new probabilistic interval-valued hesitant fuzzy operations are defined. Secondly, based on these operations, the generalized probabilistic interval-valued hesitant fuzzy ordered weighted averaging (GPIVHFOWA) operator, and the generalized probabilistic interval-valued hesitant fuzzy ordered weighted geometric (GPIVHFOWG) operator are proposed, and their desirable properties are discussed. We further study their common forms and analyze the relationship among these proposed operators. Finally, a new probabilistic interval-valued hesitant fuzzy MAGDM model is constructed, and the feasibility and effectiveness of the proposed model are verified by using an example of supplier selection.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
Huanying Zhang ◽  
Fei Wang ◽  
Yushui Geng

Schweizer–Sklar (SS) operation can make information aggregation more flexible, and the Muirhead mean (MM) operator can take into account the correlation between inputs by a variable parameter. Because traditional MM is only available for real numbers and single-valued neutrosophic set (SVNS) can better express incomplete and uncertain information in decision systems, in this paper, we applied MM operators to single-valued neutrosophic sets (SVNSs) and presented two new MM aggregation operators with the SS operation, i.e., a single-valued neutrosophic SS Muirhead mean (SVNSSMM) operator and a weighted single-valued neutrosophic SS MM (WSVNSSMM) operator. We listed some properties of them and some particular cases about various parameter values. We also proposed the multi-criteria decision-making method based on the WSVNSSMM operator in SVNS. At last, we illustrated the feasibility of this method using a numerical example of company investment.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1761
Author(s):  
Tehreem Ayaz ◽  
Mohammad M. Al-Shomrani ◽  
Saleem Abdullah ◽  
Amjad Hussain

In the age of the information-based economy and the rapid advancements of data schemes, business management has been faced with extraordinary difficulties and has entered into a reasonable period where the board’s conventional enterprise execution assessment centers around the interests of investors. Speculators accept money-related information as their basis and focus on the investigation of material fascination, and in the event of the off chance that they do not, they cannot confirm the next economy period. In this way, enterprise execution reflects the interests of investors and business strategists for the needs of partners, which is significant for the forthcoming rivalry. Given that, the collection of data is a significant research tool that has lately been considered by researchers for data examination. In this paper, we have established multi-criteria decision-making methods for the assessment of business execution with spherical fuzzy information. We have applied Hamacher aggregation operators such as the spherical cubic fuzzy Hamacher weighted averaging (SCFHWA) operator, the spherical cubic fuzzy Hamacher ordered weighted averaging (SCFHOWA) operator, the spherical cubic fuzzy Hamacher hybrid averaging (SCFHHA) operator, the spherical cubic fuzzy Hamacher weighted geometric (SCFHWG) operator, the spherical cubic fuzzy Hamacher ordered weighted geometric (SCFHOWG) operator, and the spherical cubic fuzzy Hamacher hybrid geometric (SCFHHG) operator for the appraisal of the best choice of enterprise. We ultimately defend the proposed approach with the existing strategies for possibility and adequacy.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Chonghui Zhang ◽  
Weihua Su ◽  
Shouzhen Zeng ◽  
Linyun Zhang

We develop some new linguistic aggregation operators based on confidence levels. Firstly, we introduce the confidence linguistic weighted averaging (CLWA) operator and the confidence linguistic ordered weighted averaging (CLOWA) operator. These two new linguistic aggregation operators are able to consider the confidence level of the aggregated arguments provided by the information providers. We also study some of their properties. Then, based on the generalized means, we introduce the confidence generalized linguistic ordered weighted averaging (CGLOWA) operator. The main advantage of the CGLOWA operator is that it includes a wide range of special cases such as the CLOWA operator, the confidence linguistic ordered weighted quadratic averaging (CLOWQA) operator, and the confidence linguistic ordered weighted geometric (CLOWG) operator. Finally, we develop an application of the new approach in a multicriteria decision-making under linguistic environment and illustrate it with a numerical example.


Sign in / Sign up

Export Citation Format

Share Document