scholarly journals CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, Double-Blind, Two-Center Study

2021 ◽  
pp. 1-13
Author(s):  
Gregor R. Wenzel ◽  
Jan Roediger ◽  
Christof Brücke ◽  
Ana Luísa de A. Marcelino ◽  
Eileen Gülke ◽  
...  

Background: Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. Objective: We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. Methods: For 23 Parkinson’s disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. Results: Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. Conclusion: Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.

Epilepsia ◽  
2017 ◽  
Vol 58 (10) ◽  
pp. 1728-1733 ◽  
Author(s):  
Arthur Cukiert ◽  
Cristine Mella Cukiert ◽  
Jose Augusto Burattini ◽  
Pedro Paulo Mariani ◽  
Daniela Fontes Bezerra

2009 ◽  
Vol 119 (4) ◽  
pp. 269-273 ◽  
Author(s):  
Z. Kefalopoulou ◽  
A. Paschali ◽  
E. Markaki ◽  
P. Vassilakos ◽  
J. Ellul ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 461
Author(s):  
Francesca Morreale ◽  
Zinovia Kefalopoulou ◽  
Ludvic Zrinzo ◽  
Patricia Limousin ◽  
Eileen Joyce ◽  
...  

As part of the first randomized double-blind trial of deep brain stimulation (DBS) of the globus pallidus (GPi) in Tourette syndrome, we examined the effect of stimulation on response initiation and inhibition. A total of 14 patients with severe Tourette syndrome were recruited and tested on the stop signal task prior to and after GPi-DBS surgery and compared to eight age-matched healthy controls. Tics were significantly improved following GPi-DBS. The main measure of reactive inhibition, the stop signal reaction time did not change from before to after surgery and did not differ from that of healthy controls either before or after GPi-DBS surgery. This suggests that patients with Tourette syndrome have normal reactive inhibition which is not significantly altered by GPi-DBS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

AbstractDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


Neurosurgery ◽  
2006 ◽  
Vol 59 (2) ◽  
pp. 482
Author(s):  
Robert J. Maciunas ◽  
Brian Maddux ◽  
David E. Riley ◽  
Christina M. Whitney ◽  
Michael R. Schoenberg ◽  
...  

2010 ◽  
Vol 29 (2) ◽  
pp. E10 ◽  
Author(s):  
Matthew K. Mian ◽  
Michael Campos ◽  
Sameer A. Sheth ◽  
Emad N. Eskandar

Obsessive-compulsive disorder (OCD) is a psychiatric illness that can lead to chronic functional impairment. Some patients with severe, chronic OCD have been treated with ablative neurosurgical techniques over the past 4 decades. More recently, deep brain stimulation (DBS) has been investigated as a therapy for refractory OCD, and the procedure was granted a limited humanitarian device exemption by the FDA in 2009. In this article, the authors review the development of DBS for OCD, describe the current understanding of the pathophysiological mechanisms of the disorder and how the underlying neural circuits might be modulated by DBS, and discuss the clinical studies that provide evidence for the use of this evolving therapy. The authors conclude with suggestions for how a combined basic science and translational research approach could drive the understanding of the neural mechanisms underlying OCD as well as the clinical effectiveness of DBS in the setting of recalcitrant disease.


Sign in / Sign up

Export Citation Format

Share Document