scholarly journals Effect of nutmeg extract on the white adipose tissue (WAT) browning process of aging rats

2022 ◽  
pp. 1-7
Author(s):  
Yuni Susanti Pratiwi ◽  
Melisa Siannoto ◽  
Hanna Goenawan ◽  
Nova Sylviana ◽  
Vita Murniati Tarawan ◽  
...  

The white adipose tissue (WAT) browning process has become one of the promising methods for managing obesity. During this process, WAT is transformed into brown-like adipose tissue, which is also known as beige adipose tissue. The browning process can be activated by several inducers. One of the best candidates is peroxisome proliferator-activated receptor γ (PPARγ) agonist. Nutmeg (Myristica fragrans Houtt) is a natural PPARα/γ partial agonist that is known to contribute to the browning effect. This study aimed to explore the potential effect of nutmeg seed extract (NuSE) on body weight reduction and uncoupling protein (UCP)1, UCP2, UCP3, and peroxisome proliferator-activated receptor gamma coactivator-1 PGC-1α levels in aging rats. Eight male Wistar rats (80 weeks old) were divided into control and treatment groups. Both groups were fed a standard diet, and the treatment group was given 8.1 mg/kg body weight/day of NuSE via oral gavage for 12 weeks. After 12 weeks, the levels of UCP1, UCP2, UCP3, and PGC-1α from both inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) were examined. We observed that the administration of NuSE has no significant effect to the decreasement of rats body weights (p = 0.464), levels of UCP1 (p = 0.686), UCP2 (p = 0.360), UCP3 (p = 0.076), and PGC-1α (p = 0.200).

2020 ◽  
Vol 12 (2) ◽  
pp. 85-101
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Obesity has been decades become a highly interest study, accompanied by the realization that adipose tissue (AT) plays a major role in the regulation of metabolic function.CONTENT: In past few years, adipocytes classification, development, and differentiation has been significant changes. The white adipose tissue (WAT) can transform to a phenotype like brown adipose (BAT) type and function. Exercise and cold induction were the most common factor for fat browning; however batokines such as fibroblast growth factor (FGF)-21, interleukin (IL)-6, Slit homolog 2 protein (SLIT2)-C, and Meteorin-like protein (METRNL) perform a beneficial browning action by increasing peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α protein levels, a key factor to stimulate mitochondrial biogenesis and uncoupling Protein 1 (UCP1) transcription, thus change the WAT phenotype into beige.SUMMARY: AT recently known as a complex organ, not only bearing a storage function but as well as the master regulator of energy balance and nutritional homeostasis; brown and beige fat express constitutively high levels of thermogenic genes and raise our expectation on new strategies for fighting obesity and metabolic disorders.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, inflammation, IR, metabolic disease


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5954
Author(s):  
Kyeong Jo Kim ◽  
Eui-Seon Jeong ◽  
Ki Hoon Lee ◽  
Ju-Ryun Na ◽  
Soyi Park ◽  
...  

Previously, we demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) and ellagic acid has hypocholesterolemic and antiobesity activity, at least partially mediated by the downregulation of adipogenic and lipogenic gene expression in high-fat diet (HFD)-fed animals. The present study investigated the thermogenic and lipolytic antiobesity effects of 5-uRCK and ellagic acid in HFD-induced obese C57BL/6 mice and explored its mechanism of action. Mice fed an HFD received 5-uRCK or ellagic acid as a post-treatment or pretreatment. Both post-treated and pretreated mice showed significant reductions in body weight and adipose tissue mass compared to the HFD-fed mice. The protein levels of lipolysis-associated proteins, such as adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and perilipin1 (PLIN1), were significantly increased in both the 5-uRCK- and ellagic acid-treated mouse epididymal white adipose tissue (eWAT). Additionally, thermogenesis-associated proteins, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transferase-1 (CPT1), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), in inguinal white adipose tissue (ingWAT) were clearly increased in both the 5-uRCK- and ellagic acid-treated mice compared to HFD-fed mice. These results suggest that 5-uRCK and ellagic acid are effective for suppressing body weight gain and enhancing the lipid profile.


2021 ◽  
pp. 1-31
Author(s):  
Long Cheng ◽  
Jingkang Wang ◽  
Yongcheng An ◽  
Hongyu Dai ◽  
Yuhui Duan ◽  
...  

Abstract The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experiment results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats including reducing body weight (BW) gain, Lee’s index, food intake, inguinal white adipose tissue (IWAT) accumulation, blood lipid fasting insulin level and fasting blood glucose level, increasing the ratios of brown adipose tissue (BAT) mass to BW, and improving insulin sensitivity and liver function. In addition, mulberry leaf induced browning of IWAT by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated BAT by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT1) protein in both IWAT and BAT via a mechanism involving Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1269-1277 ◽  
Author(s):  
James M. Way ◽  
W. Wallace Harrington ◽  
Kathleen K. Brown ◽  
William K. Gottschalk ◽  
Scott S. Sundseth ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle, PPARγ agonist treatment decreased the expression of pyruvate dehydrogenase kinase 4, which represses oxidative glucose metabolism, and also decreased the expression of genes involved in fatty acid transport and oxidation. These changes suggest a molecular basis for PPARγ-mediated increases in glucose utilization in muscle. In liver, PPARγ activation coordinately decreased the expression of genes involved in gluconeogenesis. We conclude from these studies that the antidiabetic actions of PPARγ agonists are probably the consequence of 1) their effects on FFA levels, and 2), their coordinate effects on gene expression in multiple insulin-sensitive tissues.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5325-5332 ◽  
Author(s):  
Josep Mercader ◽  
Joan Ribot ◽  
Incoronata Murano ◽  
Francisco Felipe ◽  
Saverio Cinti ◽  
...  

A reduced brown adipose phenotype in white adipose tissue (WAT) may contribute to obesity and type 2 diabetes in humans. Retinoic acid, the carboxylic form of vitamin A, triggers in rodents a reduction of body weight and adiposity and an increased expression of uncoupling proteins in brown adipose tissue and skeletal muscle. In this study, we investigated possible remodeling effects of all-trans retinoic acid (ATRA) in WAT depots. Changes in the expression of genes related to thermogenesis and fatty acid oxidation and levels of phosphorylated retinoblastoma protein were analyzed in WAT depots of adult NMRI male mice acutely injected with ATRA or vehicle, together with biometric and blood parameters. Body fat loss after ATRA treatment was unaccompanied by any increase in circulating nonesterified fatty acids or ketone bodies and accompanied by increased rectal temperature. The treatment triggered an up-regulation of the mRNA levels of uncoupling proteins 1 and 2, peroxisome proliferator-activated receptor γ coactivator-1α, peroxisome proliferator-activated receptor α, muscle- and liver-type carnitine palmitoyltransferase 1, and subunit II of cytochrome oxidase in different WAT depots. Levels of phosphorylated retinoblastoma protein in WAT depots were increased after ATRA treatment. Adipocyte size was reduced, and the number of multilocular adipocytes was increased in inguinal WAT of ATRA-treated mice. The results indicate that ATRA favors the acquisition of brown adipose tissue-like properties in WAT. Understanding the mechanisms and effectors involved in the remodeling of WAT can contribute to new avenues of prevention and treatment of obesity and type 2 diabetes.


2017 ◽  
Vol 42 (4) ◽  
pp. 1514-1525 ◽  
Author(s):  
Jiacheng Zuo ◽  
Dandan Zhao ◽  
Na Yu ◽  
Xin Fang ◽  
Qianqian Mu ◽  
...  

Background/Aims: Obesity has become a major health concern with few effective medications. Cinnamaldehyde (CA) has been reported to exhibit anti-diabetic and anti-inflammatory properties. However, whether CA shows anti-obesity activity remains unknown. Therefore, the present study aimed to investigate the potential anti-obesity effects of CA on mice fed a high-fat diet (HFD) and to explore the possible mechanisms involved. Methods: Male C57BL/6J mice fed an HFD for 12 weeks were supplemented with CA (40 mg/kg/day) via gavage for an additional 8 weeks. Mice fed a standard diet were used as normal controls. Results: The results revealed that CA treatment decreased body weight, fat mass, food intake, and serum lipid, free fatty acid and leptin levels. CA administration also improved insulin sensitivity in HFD-induced obese mice. Additionally, CA inhibited the hypertrophy of adipose tissue and induced browning of white adipose tissue. Uncoupling protein 1 (UCP1) was expressed in white adipose tissue after the oral administration of CA. Furthermore, CA enhanced the expression of the peroxisome proliferator-activated receptor γ (PPARγ), PR domain-containing 16 (PRDM16) and PPARγ coactivator 1α (PGC-1α) proteins in both brown and white adipose tissues. Conclusions: The results suggest that CA exhibits therapeutic potency against obesity by inducing the browning of white adipose tissue in HFD-fed mice.


2021 ◽  
Vol 14 (1) ◽  
pp. 153-161
Author(s):  
Deepika Sharma ◽  
Swati Sharma ◽  
Preeti Chauhan

Obesity is due to imbalance between energy intake and energy expenditure. Adipose tissues are the main site for the fat storage as well as for dissipation. There are two types of adipose tissues: white adipose tissue, which store fat as triglyceride, brown adipose tissue, which burns the fat into energy through the thermogenesis due to uncoupling protein1 present in inner mitochondrial membrane. Histone acylation causes changes in the chromatin structure without causing any change in the deoxyribonucleic acidsequence and thus regulate gene expression.Histonedeacetylase causes the deacylation of histone and interfere with function of histone. Thus histonedeacetylase inhibitors alter the expression of thermogenic gene encoding uncoupling protein 1, peroxisome proliferator activated receptor γ and also causes browning or beiging of white adipose tissue and increases the energy expenditure.


2021 ◽  
Vol 16 (9) ◽  
pp. 1934578X2110337
Author(s):  
Heggar Venkataramana Sudeep ◽  
Illuri Ramanaiah ◽  
Raj Amritha ◽  
Puttaswamy Naveen ◽  
Kuluvar Gouthamchandra ◽  
...  

Thermogenesis-mediated energy expenditure is a promising strategy to combat obesity. Aframomum melegueta commonly known as grains of paradise (GP) is a popular spice with medicinal attributes in promoting health. We have demonstrated the thermogenic effects of a standardized A melegueta seed extract (AMSE) containing not <10% 6-paradol in high fat diet-fed (HFD) mice. The 6-week oral ingestion of 20 and 40 mg/kg AMSE significantly limited the weight gain, improved the brown adipose tissue (BAT) activity in HFD mice. Interestingly, AMSE markedly induced the beige adipocytes in epididymal white adipose tissue (eWAT). AMSE treatment led to the upregulation of marker proteins i.e., uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor-gamma-coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor gamma (PPARγ) in eWAT and BAT. Our findings add to the current understanding of the thermogenic potentials of GP seed extract and report that the extract can stimulate the browning of WATs in addition to enhanced BAT activity. AMSE requires clinical validation to be explored as a dietary supplement/functional ingredient with thermogenic effect in food and beverages.


2021 ◽  
Vol 22 (11) ◽  
pp. 6025
Author(s):  
Masaki Kobayashi ◽  
Yusuke Deguchi ◽  
Yuka Nozaki ◽  
Yoshikazu Higami

Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.


Sign in / Sign up

Export Citation Format

Share Document