Prediction of different types of liver diseases using rule based classification model

2013 ◽  
Vol 21 (5) ◽  
pp. 417-432 ◽  
Author(s):  
Yugal Kumar ◽  
G. Sahoo
2021 ◽  
Vol 10 (7) ◽  
pp. 474
Author(s):  
Bingqing Wang ◽  
Bin Meng ◽  
Juan Wang ◽  
Siyu Chen ◽  
Jian Liu

Social media data contains real-time expressed information, including text and geographical location. As a new data source for crowd behavior research in the era of big data, it can reflect some aspects of the behavior of residents. In this study, a text classification model based on the BERT and Transformers framework was constructed, which was used to classify and extract more than 210,000 residents’ festival activities based on the 1.13 million Sina Weibo (Chinese “Twitter”) data collected from Beijing in 2019 data. On this basis, word frequency statistics, part-of-speech analysis, topic model, sentiment analysis and other methods were used to perceive different types of festival activities and quantitatively analyze the spatial differences of different types of festivals. The results show that traditional culture significantly influences residents’ festivals, reflecting residents’ motivation to participate in festivals and how residents participate in festivals and express their emotions. There are apparent spatial differences among residents in participating in festival activities. The main festival activities are distributed in the central area within the Fifth Ring Road in Beijing. In contrast, expressing feelings during the festival is mainly distributed outside the Fifth Ring Road in Beijing. The research integrates natural language processing technology, topic model analysis, spatial statistical analysis, and other technologies. It can also broaden the application field of social media data, especially text data, which provides a new research paradigm for studying residents’ festival activities and adds residents’ perception of the festival. The research results provide a basis for the design and management of the Chinese festival system.


2019 ◽  
Vol 5 ◽  
pp. e188 ◽  
Author(s):  
Hesam Hasanpour ◽  
Ramak Ghavamizadeh Meibodi ◽  
Keivan Navi

Classification and associative rule mining are two substantial areas in data mining. Some scientists attempt to integrate these two field called rule-based classifiers. Rule-based classifiers can play a very important role in applications such as fraud detection, medical diagnosis, etc. Numerous previous studies have shown that this type of classifier achieves a higher classification accuracy than traditional classification algorithms. However, they still suffer from a fundamental limitation. Many rule-based classifiers used various greedy techniques to prune the redundant rules that lead to missing some important rules. Another challenge that must be considered is related to the enormous set of mined rules that result in high processing overhead. The result of these approaches is that the final selected rules may not be the global best rules. These algorithms are not successful at exploiting search space effectively in order to select the best subset of candidate rules. We merged the Apriori algorithm, Harmony Search, and classification-based association rules (CBA) algorithm in order to build a rule-based classifier. We applied a modified version of the Apriori algorithm with multiple minimum support for extracting useful rules for each class in the dataset. Instead of using a large number of candidate rules, binary Harmony Search was utilized for selecting the best subset of rules that appropriate for building a classification model. We applied the proposed method on a seventeen benchmark dataset and compared its result with traditional association rule classification algorithms. The statistical results show that our proposed method outperformed other rule-based approaches.


Author(s):  
Marcelle de Carvalho Ribeiro ◽  
Gyongyi Szabo

The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1β, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on ( a) signals and mechanisms of inflammasome activation, ( b) the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and ( c) potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 47 (1) ◽  
pp. 216-248
Author(s):  
Annelen Brunner

Abstract This contribution presents a quantitative approach to speech, thought and writing representation (ST&WR) and steps towards its automatic detection. Automatic detection is necessary for studying ST&WR in a large number of texts and thus identifying developments in form and usage over time and in different types of texts. The contribution summarizes results of a pilot study: First, it describes the manual annotation of a corpus of short narrative texts in relation to linguistic descriptions of ST&WR. Then, two different techniques of automatic detection – a rule-based and a machine learning approach – are described and compared. Evaluation of the results shows success with automatic detection, especially for direct and indirect ST&WR.


2019 ◽  
Vol 11 (10) ◽  
pp. 1193 ◽  
Author(s):  
Abdallah Shanableh ◽  
Rami Al-Ruzouq ◽  
Mohamed Barakat A. Gibril ◽  
Cristina Flesia ◽  
Saeed AL-Mansoori

Whiting events in seas and lakes are a natural phenomenon caused by suspended calcium carbonate (CaCO3) particles. The Arabian Gulf, which is a semi-enclosed sea, is prone to extensive whiting that covers tens of thousands of square kilometres. Despite the extent and frequency of whiting events in the Gulf, studies documenting the whiting phenomenon are lacking. Therefore, the primary objective of this study was to detect, map and document the spatial and temporal distributions of whiting events in the Gulf using daily images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites from 2002 to 2018. A method integrating a geographic object-based image analysis, the correlation-based feature selection technique (CFS), the adaptive boosting decision tree (AdaBoost DT) and the rule-based classification were used in the study to detect, quantify and assess whiting events in the Gulf from the MODIS data. Firstly, a multiresolution segmentation was optimised using unsupervised quality measures. Secondly, a set of spectral bands and indices were investigated using the CFS to select the most relevant feature(s). Thirdly, a generic AdaBoost DT model and a rule-based classification were adopted to classify the MODIS time series data. Finally, the developed classification model was compared with various tree-based classifiers such as random forest, a single DT and gradient boosted DT. Results showed that both the combination of the mean of the green spectral band and the normalised difference index between the green and blue bands (NDGB), or the combination of the NDGB and the colour index for estimating the concentrations of calcium carbonates (CI) of the image objects, were the most significant features for detecting whiting. Moreover, the generic AdaBoost DT classification model outperformed the other tested tree-based classifiers with an overall accuracy of 97.86% and a kappa coefficient of 0.97. The whiting events during the study period (2002–2018) occurred exclusively during the winter season (November to March) and mostly in February. Geographically, the whiting events covered areas ranging from 12,000 km2 to 60,000 km2 and were mainly located along the southwest coast of the Gulf. The duration of most whiting events was 2 to 6 days, with some events extending as long as 8 to 11 days. The study documented the spatiotemporal distribution of whiting events in the Gulf from 2002 to 2018 and presented an effective tool for detecting and motoring whiting events.


2020 ◽  
Vol 10 (18) ◽  
pp. 6386
Author(s):  
Xing Bai ◽  
Jun Zhou

Benefiting from the booming of deep learning, the state-of-the-art models achieved great progress. But they are huge in terms of parameters and floating point operations, which makes it hard to apply them to real-time applications. In this paper, we propose a novel deep neural network architecture, named MPDNet, for fast and efficient semantic segmentation under resource constraints. First, we use a light-weight classification model pretrained on ImageNet as the encoder. Second, we use a cost-effective upsampling datapath to restore prediction resolution and convert features for classification into features for segmentation. Finally, we propose to use a multi-path decoder to extract different types of features, which are not ideal to process inside only one convolutional neural network. The experimental results of our model outperform other models aiming at real-time semantic segmentation on Cityscapes. Based on our proposed MPDNet, we achieve 76.7% mean IoU on Cityscapes test set with only 118.84GFLOPs and achieves 37.6 Hz on 768 × 1536 images on a standard GPU.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 443 ◽  
Author(s):  
Lianmeng Jiao ◽  
Xiaojiao Geng ◽  
Quan Pan

The belief rule-based classification system (BRBCS) is a promising technique for addressing different types of uncertainty in complex classification problems, by introducing the belief function theory into the classical fuzzy rule-based classification system. However, in the BRBCS, high numbers of instances and features generally induce a belief rule base (BRB) with large size, which degrades the interpretability of the classification model for big data sets. In this paper, a BRB learning method based on the evidential C-means clustering (ECM) algorithm is proposed to efficiently design a compact belief rule-based classification system (CBRBCS). First, a supervised version of the ECM algorithm is designed by means of weighted product-space clustering to partition the training set with the goals of obtaining both good inter-cluster separability and inner-cluster pureness. Then, a systematic method is developed to construct belief rules based on the obtained credal partitions. Finally, an evidential partition entropy-based optimization procedure is designed to get a compact BRB with a better trade-off between accuracy and interpretability. The key benefit of the proposed CBRBCS is that it can provide a more interpretable classification model on the premise of comparative accuracy. Experiments based on synthetic and real data sets have been conducted to evaluate the classification accuracy and interpretability of the proposal.


2018 ◽  
Vol 101 (6) ◽  
pp. 1967-1976 ◽  
Author(s):  
Shiva Ahmadi ◽  
Ahmad Mani-Varnosfaderani ◽  
Biuck Habibi

Abstract Motor oil classification is important for quality control and the identification of oil adulteration. In this work, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.


Sign in / Sign up

Export Citation Format

Share Document