A static sound source can improve postural stability during walking

2021 ◽  
pp. 1-7
Author(s):  
Kristina Anton ◽  
Arne Ernst ◽  
Dietmar Basta

BACKGROUND: During walking, postural stability is controlled by visual, vestibular and proprioceptive input. The auditory system uses acoustic input to localize sound sources. For some static balance conditions, the auditory influence on posture was already proven. Little is known about the impact of auditory inputs on balance in dynamic conditions. OBJECTIVE: This study is aimed at investigating postural stability of walking tasks in silence and sound on condition to better understand the impact of auditory input on balance in movement. METHODS: Thirty participants performed: walking (eyes open), tandem steps, walking with turning head and walking over barriers. During each task, acoustic condition changed between silence and presented noise through an earth-fixed loudspeaker located at the end of the walking distance. Body sway velocity was recorded close to the body’s center of gravity. RESULTS: A decreased body sway velocity was significant for walking (eyes open), tandem steps and walking over barriers when noise was presented. Those auditory stimuli did not affect sway velocity while walking with turning head. The posture has probably improved due to the localization ability when walking with the head facing forward, while the localization ability was impaired when turning the head. CONCLUSIONS: The localization ability of a fixed sound source through the auditory system has a significant but limited impact on posture while walking.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruijie Meng ◽  
Jingpeng Xiang ◽  
Jinqiu Sang ◽  
Chengshi Zheng ◽  
Xiaodong Li ◽  
...  

The ability to localize a sound source is very important in our daily life, specifically to analyze auditory scenes in complex acoustic environments. The concept of minimum audible angle (MAA), which is defined as the smallest detectable difference between the incident directions of two sound sources, has been widely used in the research fields of auditory perception to measure localization ability. Measuring MAAs usually involves a reference sound source and either a large number of loudspeakers or a movable sound source in order to reproduce sound sources at a large number of predefined incident directions. However, existing MAA test systems are often cumbersome because they require a large number of loudspeakers or a mechanical rail slide and thus are expensive and inconvenient to use. This study investigates a novel MAA test method using virtual sound source synthesis and avoiding the problems with traditional methods. We compare the perceptual localization acuity of sound sources in two experimental designs: using the virtual presentation and real sound sources. The virtual sound source is reproduced through a pair of loudspeakers weighted by vector-based amplitude panning (VBAP). Results show that the average measured MAA at 0° azimuth is 1.1° and the average measured MAA at 90° azimuth is 3.1° in a virtual acoustic system, meanwhile the average measured MAA at 0° azimuth is about 1.2° and the average measured MAA at 90° azimuth is 3.3° when using the real sound sources. The measurements of the two methods have no significant difference. We conclude that the proposed MAA test system is a suitable alternative to more complicated and expensive setups.


Author(s):  
Leslie S. Smith

Audition is the ability to sense and interpret pressure waves within a range of frequencies. The system tries to solve the what and where tasks: what is the sound source (interpretation), and where is it (location)? Auditory environments vary in the number and location of sound sources, their level and in the degree of reverberation, yet biological systems have robust techniques that work over a large range of conditions. We briefly review the auditory system, including the auditory brainstem and mid-brain major components, attempting to connect its structure with the problems to be solved: locating some sounds, and interpreting important ones. Systems using knowledge of animal auditory processing are discussed, including both CPU-based and Neuromorphic approaches, starting from the auditory filterbank, and including silicon cochleae: feature (auditory landmark) based systems are considered. The level of performance associated with animal auditory systems has not been achieved, and we discuss ways forward.


2003 ◽  
Vol 96 (3_suppl) ◽  
pp. 1173-1184 ◽  
Author(s):  
Hua-Fang Liao ◽  
Ai-Wen Hwang

To investigate the relations between the balance function and gross motor ability, we recruited 15 children with cerebral palsy from 5 to 12 years in age. Balance function was tested by the Smart Balance Master System and by clinical tests. The Motor Age test was used to test gross motor ability. Analysis showed that postural stability in eyes open, eyes closed, and swaying vision conditions (visual surrounding swaying with body sway), the duration of one leg standing, and the duration of maintaining a heel-to-toe position were significantly correlated with gross motor ability. Postural stability in the eyes-closed condition was the best predicting factor and could explain 64% of the variability of gross motor ability. Whether the training of postural stability in eyes-closed condition can improve the gross motor function needs further study.


2020 ◽  
Author(s):  
Marta Ołpińska-Lischka ◽  
Karolina Kujawa ◽  
Janusz Maciaszek

Abstract Objective: Sleepiness caused by poor sleep hygiene may increase the risk of injuries and damages during physical activity. Individual data so far indicate a generally better static postural stability of women regardless of sleeping conditions. The main aim of this study was to assess the impact of sleep deprivation on postural stability according to gender after 24 hours of sleep deprivation. Methods: Participants included 83 students (36 men and 47 women). Postural stability was measured with eyes open and closed eyes before and after sleep deprivation. Data from posturographic platform were used to assess postural stability objectively. Results: The type of test determined the size of observed changes in postural stability. The data suggest that women are better able to cope with the effects of sleep deprivation than men. Conclusion: Postural control system is very important in sport and in physically active people. The results show that men are more sensitive to sleep deprivation than women because they had higher COP path length values in tests. Less postural stability of the body due to sleep deprivation indicates a higher risk of injury during physical activity.


Author(s):  
Marta Ołpińska-Lischka ◽  
Karolina Kujawa ◽  
Janusz Maciaszek

Objective: Sleepiness caused by sleep deprivation may increase the risk of injuries and damages during physical activity. Individual data so far indicate a generally better static postural stability of women regardless of sleeping conditions. The main aim of this study was to assess the impact of sleep deprivation on postural stability according to gender after 24 h of sleep deprivation. Methods: Participants included 83 students (36 men and 47 women). Postural stability was measured with eyes open and closed eyes before and after sleep deprivation. Data from posturographic platform were used to assess postural stability objectively. Results: The type of test determined the size of observed changes in postural stability. The data suggest that women are better able to cope with the effects of sleep deprivation than men. Conclusion: Postural control system is very important in sport and in physically active people. The results show that men are more sensitive to sleep deprivation than women because they had higher COP (center of pressure) values in tests. Less postural stability of the body due to sleep deprivation indicates a higher risk of injury during physical activity.


2018 ◽  
Vol 10 (1) ◽  
pp. 134-140
Author(s):  
Tomasz Marciniak ◽  
Ida Wiszomirska ◽  
Lidia Ilnicka

AbstractStudy aim: Assessment of postural stability performed on an unstable stabilometry platform. Comparison of the results ob­tained by two groups consisting of elderly (OW) (60+ years old) and younger women (YW).Material and methods: Seventy-three female volunteers were divided into two groups: 40 young women (20.2 ± 1.75), and 32 elderly women (68.3 ± 7.43). Participants performed five stability tests on Biodex Balance System SD: three 20-second tries, the Postural Stability Test (PST) and the Fall Risk Test (FRT). Three stability indexes - overall (OSI), anterior-posterior (APSI), and medial-lateral (MLSI) - both with eyes open (EO) and closed (EC) were analyzed. The impact of vision on balance was calculated as EC-EO. Also effect size was calculated and evaluated.Results: All of the parameters differed significantly between groups in favour of YW. The largest difference in significance as well as effect size was noted for FRT, p < 0.001 and 1.86 respectively. Tries measure the impact of vision on balance (EC-EO). The results concerning tries with EC-EO showed the strongest discrimination between groups - OSI p = 0.0088 (relative differ­ence 0.23 ± 0.26) and APSI p = 0.0268 (relative difference 0.17 ± 0.2). YW had a significantly better outcome.Conclusions: YW had better results in all of the parameters taken into consideration, with most of them being significant. This confirms that all of the regressive changes appearing with age influence balance. Lack of visual input (EC) in OW caused sig­nificantly worse results in most of the measured parameters, showing that vision is a very important factor for balance mainte­nance in the elderly.


Safety ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Harish Chander ◽  
Matthew McAllister ◽  
Angelia Holland ◽  
Hunter Waldman ◽  
Benjamin Krings ◽  
...  

Background: Postural stability and cognitive performance are challenged in firefighters. The purpose of this investigation was to examine the impact of 7-day ketone supplementation on postural stability, cognitive performance, and muscular activation before and after a physiological workload. Methods: Nine professional firefighters completed two experimental sessions (pre- and post-workload) in a counterbalanced, double-blind design. Participants ingested either a ketone salt (KS) or placebo (PLA) daily for seven days, and had an eighth ingestion 30 min prior to testing. Each experimental testing consisted of maximal voluntary contractions (MVIC) for four muscles (knee flexors—BF, extensor—VM, ankle dorsiflexors—TA, and plantar flexors—MG) using electromyography and postural stability testing (eyes open (EO), eyes closed (EC), and eyes open-dual-task using a FitLight™ system (EOT)), before (pre-workload) and after (post-workload) a simulated physiological workload. The workload consisted of 35 min steady state exercise at 60% of peak oxygen consumption wearing firefighter personal protective equipment (PPE). Results: Significant differences were limited to time effects (pre-workload vs. post-workload), with no differences between groups (KS vs. PLA). Significantly lower muscle activity in VM, TA, and MG during MVIC, greater postural sway and muscle activity in BF during EC and EOT, and slower response time during EOT were evident post-workload. Conclusions: A 7-day ketone supplementation does not impact postural stability, muscle activity, and cognitive tasks, but a fatiguing workload causes significant performance reduction.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3731
Author(s):  
Magdalena Cyma-Wejchenig ◽  
Jacek Tarnas ◽  
Katarzyna Marciniak ◽  
Rafał Stemplewski

The aim of the study was to assess the impact of proprioceptive training with the use of virtual reality (VR) on the level of postural stability of high–altitude workers. Twenty-one men working at height were randomly assigned to the experimental group (EG) with training (n = 10) and control group (CG) without training (n = 11). Path length of the displacement of the center of pressure (COP) signal and its components in the anteroposterior and medial–lateral directions were measured with use of an AccuGaitTM force plate before and after intervention (6 weeks, 2 sessions × 30 min a week). Tests were performed at two different platform heights, with or without eyes open and with or without a dual task. Two–way ANOVA revealed statistically significant interaction effects for low–high threat, eyes open-eyes closed, and single task-dual task. Post-training values of average COP length were significantly lower in the EG than before training for all analyzed parameters. Based on these results, it can be concluded that the use of proprioceptive training with use of VR can support, or even replace, traditional methods of balance training.


2020 ◽  
Author(s):  
Timo Oess ◽  
Heiko Neumann ◽  
Marc O. Ernst

AbstractEarly studies have shown that the localization of a sound source in the vertical plane can be accomplished with only a single ear and thus assumed to be based on monaural spectral cues. Such cues consists of notches and peaks in the perceived spectrum which vary systematically with the elevation of sound sources. This poses several problems to the auditory system like extracting relevant and direction-dependent cues among others. Interestingly, at the stage of elevation estimate binaural information from both ears is already available and it seems reasonable of the auditory system to take advantage of this information. Especially, since such a binaural integration can improve the localization performance dramatically as we demonstrate with a computational model of binaural signal integration for sound source localization in the vertical plane. In line with previous findings of vertical localization, modeling results show that the auditory system can perform monaural as well as binaural sound source localization given a single, learned map of binaural signals. Binaural localization is by far more accurate than monaural localization, however, when prior information about the perceived sound is integrated localization performance is restored. Thus, we propose that elevation estimation of sound sources is facilitated by an early binaural signal integration and can incorporate sound type specific prior information for higher accuracy.


1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


Sign in / Sign up

Export Citation Format

Share Document