The influence of cognitive tasks on vestibular-induced eye movements in young and older adults

2008 ◽  
Vol 18 (4) ◽  
pp. 187-195
Author(s):  
Bryan K. Ward ◽  
Mark S. Redfern ◽  
J. Richard Jennings ◽  
Joseph M. Furman

The purpose of this study was to further investigate the mechanism of the influence of concurrent cognitive tasks on eye movements induced by earth-vertical axis rotation (EVAR) in young and older participants. Ten young (ages 21–34), ten young-old (ages 65–74) and nine older participants (ages 75–84) each performed five different cognitive tasks during sinusoidal EVAR in darkness at 0.02 Hz for three cycles, 0.05 Hz for four cycles, and 0.1 Hz for five cycles, all at a peak velocity of 50 degrees per second. The five tasks differed from one another in terms of their inherent sensory and motor components and were designed to provide insight into the effect of cognitive processing on VOR dynamics. Tasks included auditory frequency and lateralization disjunctive reaction time (DRT) tasks, silent and audible backward counting, and a question-response clinical standard task. For the DRT trials, tones were presented to the participant through earphones. Participants were instructed to respond as accurately and as quickly as possible. Eye movements were recorded with electro-oculography and calibrations were performed before and after every five rotations in all subjects. Participants had an increase in VOR phase lead while performing DRT tasks as compared to the clinical standard and counting tasks. The effect was most noticeable at the 0.02 Hz frequency and was present in all age groups. In addition, we observed a decrease in VOR gain while subjects performed auditory DRT tasks during EVAR at 0.02 Hz, 0.05 Hz and 0.1 Hz as compared to the clinical standard and counting tasks. These results suggest cognitive task-dependent interference between central auditory processing and vestibular processing primarily at the sensory rather than at the motor level.

2021 ◽  
Author(s):  
Esteban Sebastian Lelo de Larrea-Mancera ◽  
Mark Allen Phillipp ◽  
Trevor Stavropoulos ◽  
Audrey Anna Carrillo ◽  
Sierra Cheong ◽  
...  

Hearing speech in competition is a major complaint in those who suffer from hearing loss. Here we investigate a novel perceptual learning game that is designed to train perceptual skills thought to underlie speech in competition, such as spectral-temporal processing and sound localization, under conditions of quiet and in noise. Thirty young normal hearing participants were assigned either to this mixed-training condition or an active control consisting of frequency discrimination training within the same gamified setting. To assess training outcomes, we examine tests of basic central auditory processing, speech in competition, and cognitive processing abilities before and after training. Results suggest modest improvements on speech in competition tests in the mixed-training but not the frequency-discrimination control condition. This data show promise for future applications in populations with hearing difficulties.


2012 ◽  
Vol 17 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Carmen Munk ◽  
Günter Daniel Rey ◽  
Anna Katharina Diergarten ◽  
Gerhild Nieding ◽  
Wolfgang Schneider ◽  
...  

An eye tracker experiment investigated 4-, 6-, and 8-year old children’s cognitive processing of film cuts. Nine short film sequences with or without editing errors were presented to 79 children. Eye movements up to 400 ms after the targeted film cuts were measured and analyzed using a new calculation formula based on Manhattan Metrics. No age effects were found for jump cuts (i.e., small movement discontinuities in a film). However, disturbances resulting from reversed-angle shots (i.e., a switch of the left-right position of actors in successive shots) led to increased reaction times between 6- and 8-year old children, whereas children of all age groups had difficulties coping with narrative discontinuity (i.e., the canonical chronological sequence of film actions is disrupted). Furthermore, 4-year old children showed a greater number of overall eye movements than 6- and 8-year old children. This indicates that some viewing skills are developed between 4 and 6 years of age. The results of the study provide evidence of a crucial time span of knowledge acquisition for television-based media literacy between 4 and 8 years.


2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Ramtin Zargari Marandi ◽  
Camilla Ann Fjelsted ◽  
Iris Hrustanovic ◽  
Rikke Dan Olesen ◽  
Parisa Gazerani

The affective dimension of pain contributes to pain perception. Cognitive load may influence pain-related feelings. Eye tracking has proven useful for detecting cognitive load effects objectively by using relevant eye movement characteristics. In this study, we investigated whether eye movement characteristics differ in response to pain-related feelings in the presence of low and high cognitive loads. A set of validated, control, and pain-related sounds were applied to provoke pain-related feelings. Twelve healthy young participants (six females) performed a cognitive task at two load levels, once with the control and once with pain-related sounds in a randomized order. During the tasks, eye movements and task performance were recorded. Afterwards, the participants were asked to fill out questionnaires on their pain perception in response to the applied cognitive loads. Our findings indicate that an increased cognitive load was associated with a decreased saccade peak velocity, saccade frequency, and fixation frequency, as well as an increased fixation duration and pupil dilation range. Among the oculometrics, pain-related feelings were reflected only in the pupillary responses to a low cognitive load. The performance and perceived cognitive load decreased and increased, respectively, with the task load level and were not influenced by the pain-related sounds. Pain-related feelings were lower when performing the task compared with when no task was being performed in an independent group of participants. This might be due to the cognitive engagement during the task. This study demonstrated that cognitive processing could moderate the feelings associated with pain perception.


1995 ◽  
Vol 115 (5) ◽  
pp. 603-609 ◽  
Author(s):  
Gilles Clement ◽  
Christian Darlot ◽  
Anna Petropoulos ◽  
Alain Berthoz

Author(s):  
Alessandro Benati ◽  
Tanja Angelovska

AbstractThe present study investigates the effects of Processing Instruction on two different age groups and the role that cognitive task demands might play in the results generated by Processing Instruction. This study includes school-age children and adult native speakers of German learning English as a foreign language – a language combination not previously investigated within the Processing Instruction and individual differences research paradigm. The present study investigates directly whether two different age groups will benefit equally from Processing Instruction in altering their reliance on lexical temporal indicators and redirecting their attention to verb forms on Processing Instruction activities with different cognitive demands. The grammatical feature chosen for this study is the English past simple tense marking tested on both interpretation and production measures. The results from this study provide further evidence that the Processing Instruction is an effective instructional treatment in helping school-age children and adult L2 learners to make accurate form-meaning connections. The results from the first sentence-level interpretation task and the production task showed that Processing Instruction has positive and equal effects on both age groups (school-age learners and adults). The positive effects of instruction were maintained over the delayed post-test for both age groups who made similar gains on the immediate post-test. The results from the second (cognitively more complex) sentence-level interpretation task indicated that the adults made greater gains than school-age learners. However, both groups retained the positive effects of instruction over time. The difference in gains between the two age groups on the second sentence-level interpretation task can be explained in terms of cognitive processing load.


1976 ◽  
Vol 41 (2) ◽  
pp. 216-225 ◽  
Author(s):  
Daniel S. Beasley ◽  
Jean E. Maki ◽  
Daniel J. Orchik

Time-compressed versions of the WIPI and PB-K 50 speech discrimination measures were presented at two sensation levels to 60 children divided into three age-groups of 20 each. Results showed that average intelligibility scores increased as a function of increasing age and sensation level and decreased with increasing amounts of time compression. The PB-K 50 measure was found to be more difficult than the WIPI for each age-group under each condition of time compression and sensation level. The several factors under study were found to interact. The results are discussed relative to open- versus closed-message set response tasks and the implications for audiological diagnoses of children with central auditory processing problems.


1997 ◽  
Vol 78 (2) ◽  
pp. 1193-1197 ◽  
Author(s):  
Susan Wearne ◽  
Theodore Raphan ◽  
Bernard Cohen

Wearne, Susan, Theodore Raphan, and Bernard Cohen. Contribution of vestibular commissural pathways to spatial orientation of the angular vestibuloocular reflex. J. Neurophysiol. 78: 1193–1197, 1997. During nystagmus induced by the angular vestibuloocular reflex (aVOR), the axis of eye velocity tends to align with the direction of gravitoinertial acceleration (GIA), a process we term “spatial orientation of the aVOR.” We studied spatial orientation of the aVOR in rhesus and cynomolgus monkeys before and after midline section of the rostral medulla abolished all oculomotor functions related to velocity storage, leaving the direct optokinetic and vestibular pathways intact. Optokinetic afternystagmus and the bias component of off-vertical-axis rotation were lost, and the aVOR time constant was reduced to a value commensurate with the time constants of primary semicircular canal afferents. Spatial orientation of the aVOR, induced either during optokinetic or vestibular stimulation, was also lost. Vertical and roll aVOR time constants could no longer be lengthened in side-down or supine/prone positions, and static and dynamic tilts of the GIA no longer produced cross-coupling from the yaw to pitch and yaw to roll axes. Consequently, the induced nystagmus remained entirely in head coordinates after the lesion, regardless of the direction of the resultant GIA vector. Gains of the aVOR and of optokinetic nystagmus to steps of velocity were unaffected or slightly increased. These results are consistent with a model in which the direct aVOR pathways are organized in semicircular canal coordinates and spatial orientation is restricted to the indirect (velocity storage) pathways.


Sign in / Sign up

Export Citation Format

Share Document