A review on segmentation of lung parenchyma based on deep learning methods

2021 ◽  
pp. 1-15
Author(s):  
Wenjun Tan ◽  
Peifang Huang ◽  
Xiaoshuo Li ◽  
Genqiang Ren ◽  
Yufei Chen ◽  
...  

Precise segmentation of lung parenchyma is essential for effective analysis of the lung. Due to the obvious contrast and large regional area compared to other tissues in the chest, lung tissue is less difficult to segment. Special attention to details of lung segmentation is also needed. To improve the quality and speed of segmentation of lung parenchyma based on computed tomography (CT) or computed tomography angiography (CTA) images, the 4th International Symposium on Image Computing and Digital Medicine (ISICDM 2020) provides interesting and valuable research ideas and approaches. For the work of lung parenchyma segmentation, 9 of the 12 participating teams used the U-Net network or its modified forms, and others used the methods to improve the segmentation accuracy include attention mechanism, multi-scale feature information fusion. Among them, U-Net achieves the best results including that the final dice coefficient of CT segmentation is 0.991 and the final dice coefficient of CTA segmentation is 0.984. In addition, attention U-Net and nnU-Net network also performs well. In this review paper, the methods chosen by 12 teams from different research groups are evaluated and their segmentation results are analyzed for the study and references to those involved.

2019 ◽  
Vol 28 (2) ◽  
pp. 275-289 ◽  
Author(s):  
S. Pramod Kumar ◽  
Mrityunjaya V. Latte

Abstract The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.


2021 ◽  
pp. 1-15
Author(s):  
Wenjun Tan ◽  
Luyu Zhou ◽  
Xiaoshuo Li ◽  
Xiaoyu Yang ◽  
Yufei Chen ◽  
...  

BACKGROUND: The distribution of pulmonary vessels in computed tomography (CT) and computed tomography angiography (CTA) images of lung is important for diagnosing disease, formulating surgical plans and pulmonary research. PURPOSE: Based on the pulmonary vascular segmentation task of International Symposium on Image Computing and Digital Medicine 2020 challenge, this paper reviews 12 different pulmonary vascular segmentation algorithms of lung CT and CTA images and then objectively evaluates and compares their performances. METHODS: First, we present the annotated reference dataset of lung CT and CTA images. A subset of the dataset consisting 7,307 slices for training and 3,888 slices for testing was made available for participants. Second, by analyzing the performance comparison of different convolutional neural networks from 12 different institutions for pulmonary vascular segmentation, the reasons for some defects and improvements are summarized. The models are mainly based on U-Net, Attention, GAN, and multi-scale fusion network. The performance is measured in terms of Dice coefficient, over segmentation ratio and under segmentation rate. Finally, we discuss several proposed methods to improve the pulmonary vessel segmentation results using deep neural networks. RESULTS: By comparing with the annotated ground truth from both lung CT and CTA images, most of 12 deep neural network algorithms do an admirable job in pulmonary vascular extraction and segmentation with the dice coefficients ranging from 0.70 to 0.85. The dice coefficients for the top three algorithms are about 0.80. CONCLUSIONS: Study results show that integrating methods that consider spatial information, fuse multi-scale feature map, or have an excellent post-processing to deep neural network training and optimization process are significant for further improving the accuracy of pulmonary vascular segmentation.


2021 ◽  
Author(s):  
Jiyeon Ha ◽  
Taeyong Park ◽  
Hong-Kyu Kim ◽  
Youngbin Shin ◽  
Yousun Ko ◽  
...  

BACKGROUND As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanding. OBJECTIVE We aimed to develop a deep learning model (DLM) to select the L3 slice with consideration of anatomic variations and to segment cross-sectional areas (CSAs) of abdominal muscle and fat. METHODS Our DLM, named L3SEG-net, was composed of a YOLOv3-based algorithm for selecting the L3 slice and a fully convolutional network (FCN)-based algorithm for segmentation. The YOLOv3-based algorithm was developed via supervised learning using a training dataset (n=922), and the FCN-based algorithm was transferred from prior work. Our L3SEG-net was validated with internal (n=496) and external validation (n=586) datasets. L3 slice selection accuracy was evaluated by the distance difference between ground truths and DLM-derived results. Technical success for L3 slice selection was defined when the distance difference was <10 mm. Overall segmentation accuracy was evaluated by CSA error. The influence of anatomic variations on DLM performance was evaluated. RESULTS In the internal and external validation datasets, the accuracy of automatic L3 slice selection was high, with mean distance differences of 3.7±8.4 mm and 4.1±8.3 mm, respectively, and with technical success rates of 93.1% and 92.3%, respectively. However, in the subgroup analysis of anatomic variations, the L3 slice selection accuracy decreased, with distance differences of 12.4±15.4 mm and 12.1±14.6 mm, respectively, and with technical success rates of 67.2% and 67.9%, respectively. The overall segmentation accuracy of abdominal muscle areas was excellent regardless of anatomic variation, with the CSA errors of 1.38–3.10 cm2. CONCLUSIONS A fully automatic system was developed for the selection of an exact axial CT slice at the L3 vertebral level and the segmentation of abdominal muscle areas.


2021 ◽  
Author(s):  
Jiyeon Ha ◽  
Taeyong Park ◽  
Hong-Kyu Kim ◽  
Youngbin Shin ◽  
Yousun Ko ◽  
...  

Abstract Background and aims: As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanded. We aimed to develop a deep learning model (DLM) to select the L3 slice with consideration of anatomic variations and to segment cross-sectional areas (CSAs) of abdominal muscle and fat. Methods: Our DLM, named L3SEG-net, was composed of a YOLOv3-based algorithm for selecting the L3 slice and a fully convolutional network (FCN)-based algorithm for segmentation. The YOLOv3-based algorithm was developed via supervised learning using a training dataset (n=922), and the FCN-based algorithm was transferred from prior work. Our L3SEG-net was validated with internal (n=496) and external validation (n=586) datasets. L3 slice selection accuracy was evaluated by the distance difference between ground truths and DLM-derived results. Technical success for L3 slice selection was defined when the distance difference was <10 mm. Overall segmentation accuracy was evaluated by CSA error. The influence of anatomic variations on DLM performance was evaluated.Results: In the internal and external validation datasets, the accuracy of automatic L3 slice selection was high, with mean distance differences of 3.7±8.4 mm and 4.1±8.3 mm, respectively, and with technical success rates of 93.1% and 92.3%, respectively. However, in the subgroup analysis of anatomic variations, the L3 slice selection accuracy decreased, with distance differences of 12.4±15.4 mm and 12.1±14.6 mm, respectively, and with technical success rates of 67.2% and 67.9%, respectively. The overall segmentation accuracy of abdominal muscle areas was excellent regardless of anatomic variation, with the CSA errors of 1.38–3.10 cm2.Conclusions: A fully automatic system was developed for the selection of an exact axial CT slice at the L3 vertebral level and the segmentation of abdominal muscle areas.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012021
Author(s):  
A V Dobshik ◽  
A A Tulupov ◽  
V B Berikov

Abstract This paper presents an automatic algorithm for the segmentation of areas affected by an acute stroke in the non-contrast computed tomography brain images. The proposed algorithm is designed for learning in a weakly supervised scenario when some images are labeled accurately, and some images are labeled inaccurately. Wrong labels appear as a result of inaccuracy made by a radiologist in the process of manual annotation of computed tomography images. We propose methods for solving the segmentation problem in the case of inaccurately labeled training data. We use the U-Net neural network architecture with several modifications. Experiments on real computed tomography scans show that the proposed methods increase the segmentation accuracy.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Perrine Chaurand ◽  
Wei Liu ◽  
Daniel Borschneck ◽  
Clément Levard ◽  
Mélanie Auffan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document