scholarly journals Clinical aspects of B vitamin use

2021 ◽  
Vol 5 (9) ◽  
pp. 579-585
Author(s):  
E.V. Biryukova ◽  
◽  
M.V. Shinkin ◽  

Polyneuropathy is a common disorder of the peripheral nervous system. Diabetic neuropathy is the most common and most studied variant of polyneuropathies. The duration of carbohydrate metabolism disorders and inadequate glycemic control are risk factors for nervous system damage in diabetes. Distal neuropathy is a common type of neuropathy associated with diabetes. Interconnecting pathological mechanisms initiated by high blood glucose result in the damage of peripheral nerve fibers. Clinical presentations of distal neuropathy depend on the damage of proximal or distal and sensory or motor nerve fibers and the involvement of the vegetative nervous system. Medications improving metabolic processes in nerve fibers and reducing the severity of peripheral nerve damage are beneficial in addressing the harmful effects of hyperglycemia. Neurometabolic therapy includes thiamine, pyridoxine, and cyanocobalamin (B vitamins) which provide neurotropic effects. B vitamins acting as co-factors in many enzymatic reactions significantly affect the normal functioning of nerve fibers. B vitamins are effective and safe agents used to treat peripheral nervous system diseases for many years. This paper discusses the potential use of B vitamins for diabetic neuropathy and the COVID-19 treatment and rehabilitation. KEYWORDS: polyneuropathy, hyperglycemia, diabetes, distal neuropathy, B vitamins, thiamine, pyridoxine, cyanocobalamin, COVID-19. FOR CITATION: Biryukova E.V., Shinkin M.V. Clinical aspects of B vitamin use. Russian Medical Inquiry. 2021;5(9):579–585 (in Russ.). DOI: 10.32364/2587-6821-2021-5-9-579-585.

2021 ◽  
Author(s):  
Neslihan Eskut ◽  
Asli Koskderelioglu

Neurotoxicity may develop with exposure to various substances such as antibiotics, chemotherapeutics, heavy metals, and solvents. Some plants and fungi are also known to be neurotoxic. Neurotoxicity can develop acutely within hours, or it can develop as a result of exposure for years. Neurotoxicity can be presented with central or peripheral nervous system findings such as neurobehavioral symptoms, extrapyramidal signs, peripheral neuropathy. Peripheral nerve fibers are affected in different ways by neurotoxicant injury. The pattern of injury depends on the target structure involved. The focus of this chapter includes signs, symptoms, pathophysiology, and treatment options of neurotoxicity.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 37-37
Author(s):  
Kristin Komnick ◽  
Jennifer May ◽  
Pouneh Kermani ◽  
Sreemanti Basu ◽  
Irene Hernandez ◽  
...  

Blood cell production is regulated by peripheral nerve fibers that innervate the bone marrow. However, little is known about the development or maintenance of hematopoietic innervation. Schwann cells (SCs) are the primary axon 'support cells' of the peripheral nervous system (PNS), and abnormal SC development is sufficient to impair peripheral nerve function. SCs are also the primary repair cell for the PNS which makes them an attractive therapeutic target for normalization of drug or malignancy-induced 'hematopoietic neuropathy'. We hypothesized that neural regulation of hematopoiesis is dependent on SC development. To test this hypothesis, we used the Myelin Protein Zero-Cre (MP0-Cre); Lamc1fl/fl mouse line in which laminin-γ1 expression is deleted from SC precursors and their progeny1. Early SC maturation is dependent on autocrine SC precursor-derived molecules such as laminin-γ1. SC differentiation arrests prior to axon sorting and ensheathment in MP0-Cre; Lamc1fl/fl mice, and causes a global peripheral neuropathy that persists throughout the lifetime of the animal. Preliminary hematopoietic analysis of 'steady state' MP0-Cre; Lamc1fl/fl and littermate control mice has shown the following: (1) MP0-Cre; Lamc1fl/fl bone marrow is innervated, and Cre-mediated gene recombination occurs in cells immunophenotypically consistent with SCs throughout the peripheral nervous system, including those in the bone marrow; (2) MP0-Cre; Lamc1fl/fl mice are lymphopenic but not neutropenic; (3) MP0-Cre; Lamc1fl/fl mice have significantly reduced spleen size and cellularity; and (4) MP0-Cre; Lamc1fl/fl bone marrow has an ~50% reduction in Lin-Sca-1+Kit+(LSK) cells (measured as a percentage of the Lin- compartment of the bone marrow). These results are consistent with earlier work by our groups in which we found that global Lamc1 gene deletion in adult mice induced peripheral blood lymphopenia, reduced spleen size, and a niche-dependent reduction of lymphoid progenitor and precursor cells that was secondary to increased lymphoid precursor cell apoptosis and reduced proliferation (UBC-CreERT2; Lamc1fl/fl mouse line). As with the SC-specific laminin-γ1 deficient mice, myelopoiesis was preserved in the UBC-CreERT2; Lamc1fl/fl mice. Based on results from MP0-Cre; Lamc1fl/fl and UBC-CreERT2; Lamc1fl/fl mice, we conclude that early lymphoid but not myeloid development requires laminin-γ1 expression by MP0-Cre-targetted niche cells, i.e. Schwann Cells. Our results are consistent with reports from other labs that hematopoietic sympathetic neuropathy promotes aberrant myeloid expansion at the expense of lymphopoiesis2. Going forward, we will determine whether lymphopoietic development is dependent on global versus laminin-specific SC-derived cues, and whether these signals are transmitted directly between SCs and lymphoid biased HSPCs or indirectly via other components of the hematopoietic niche. We anticipate that this line of investigation will provide molecular insights and pharmacologic targets for prevention and or normalization of the 'hematopoietic neuropathy' induced by diabetes, aging, neurotoxic chemotherapies and myeloid malignancies. REFERENCES: 1 Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S. & Chen, Z. L. Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci25, 4463-4472, doi:10.1523/JNEUROSCI.5032-04.2005 (2005). 2 Maryanovich, M. et al. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med24, 782-791, doi:10.1038/s41591-018-0030-x (2018). Disclosures No relevant conflicts of interest to declare.


Author(s):  
Robert J. Spinner

Peripheral nerve is an important and historical part of neurosurgery. It also has been a major focus of both the written and oral examinations administered by the American Board of Neurological Surgeons (ABNS). The Oral Board candidate must be prepared for potentially one to several questions on some of the common disorders of the peripheral nervous system. In this chapter, a systematic approach to peripheral nerve problems is presented. Common areas that might be examined include tumors, injuries, inflammatory conditions, entrapments, and neuropathic pain. Five cases are illustrated, and “pearls” are provided. At the conclusion of the chapter are nine photographs representing problems the Oral Board candidate should be able to identify and answer.


2004 ◽  
Vol 30 (4) ◽  
pp. 393-409 ◽  
Author(s):  
Winnie W. Ooi ◽  
Jayashri Srinivasan

Innova ◽  
2020 ◽  
pp. 26-28
Author(s):  
Бородина К.А. ◽  
Затолокина М.А. ◽  
Харченко В.В. ◽  
Затолокина М.А. ◽  
Мишина Е.С. ◽  
...  

Currently, there is a lot of literature and research that reflects data on the structure of the peripheral nervous system. However, it should be noted that the results available in the sources do not contain a full range of data on the structural features of paraneural structures and have some contradictions. In addition, data on the morphological features of the structure of the paranephrium of peripheral nerves in ontogenesis are practically absent. This was the beginning of our research, in order to obtain new, more in-depth data on the age-related variability of the peripheral nerve paraneurium.


Author(s):  
Tim Godel ◽  
Philipp Bäumer ◽  
Said Farschtschi ◽  
Klaus Püschel ◽  
Barbara Hofstadler ◽  
...  

Abstract Purpose To examine long-term alterations of the dorsal root ganglia (DRG) and the peripheral nerve in patients with neurofibromatosis type 2 (NF2) by in vivo high-resolution magnetic resonance neurography (MRN) and their correlation to histology. Methods In this prospective study the lumbosacral DRG, the right sciatic, tibial, and peroneal nerves were examined in 6 patients diagnosed with NF2 and associated polyneuropathy (PNP) by a standardized MRN protocol at 3 T. Volumes of DRG L3–S2 as well as peripheral nerve lesions were assessed and compared to follow-up examinations after 14–100 months. In one patient, imaging findings were further correlated to histology. Results Follow-up MRN examination showed a non-significant increase of volume for the DRG L3: +0.41% (p = 0.10), L4: +22.41% (p = 0.23), L5: +3.38% (p = 0.09), S1: +10.63% (p = 0.05) and S2: +1.17% (p = 0.57). Likewise, peripheral nerve lesions were not significantly increased regarding size (2.18 mm2 vs. 2.15 mm2, p = 0.89) and number (9.00 vs. 9.33, p = 0.36). Histological analyses identified schwannomas as the major correlate of both DRG hyperplasia and peripheral nerve lesions. For peripheral nerve microlesions additionally clusters of onion-bulb formations were identified. Conclusion Peripheral nervous system alterations seem to be constant or show only a minor increase in adult NF2. Thus, symptoms of PNP may not primarily attributed to the initial schwannoma growth but to secondary long-term processes, with symptoms only occurring if a certain threshold is exceeded. Histology identified grouped areas of Schwann cell proliferations as the correlate of DRG hyperplasia, while for peripheral nerve lesions different patterns could be found.


2020 ◽  
Vol 24 (02) ◽  
pp. 175-180
Author(s):  
Alberto Stefano Tagliafico ◽  
Raquel Prada González ◽  
Federica Rossi ◽  
Bianca Bignotti ◽  
Carlo Martinoli

AbstractThe peripheral nervous system is increasingly being investigated using medical imaging as a complement or in association with electrodiagnostics tests. The application of imaging techniques, such as ultrasound (US) and magnetic resonance imaging (MRI), allows detailed visualization of the peripheral nervous system. According to the European Society of Musculoskeletal Radiology, the use of US for nerve evaluation is strongly encouraged. In addition, the role of US is further enhanced by the wide application of US-guided techniques to diagnose or to treat peripheral nerve disorders.Standard evaluation of peripheral nerves on US usually relies on cross-sectional area evaluation with different cutoff values in the osteofibrous tunnels and outside them. In several anatomical areas, side-to-side comparison is highly recommended because it helps distinguish subtle variations by using the unaffected limb as an internal control.US is widely used to perform US-guided interventional procedures on peripheral nerves. The recent development of radiomics and machine and deep learning applied to peripheral nerves may reveal new insights beyond the capabilities of the human eye. Radiomics may have a role in expanding the diagnostic capabilities of US and MRI in the study of peripheral nerve pathology, especially when the cross-sectional area is not markedly increased.


2019 ◽  
Vol 48 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Danielle L. Brown ◽  
Michael Staup ◽  
Cynthia Swanson

Qualitative histopathology has been the gold standard for evaluation of morphological tissue changes in all organ systems, including the peripheral nervous system. However, the human eye is not sensitive enough to detect small changes in quantity or size. Peripheral nervous system toxicity can manifest as subtle changes in neuron size, neuron number, axon size, number of myelinated or unmyelinated axons, or number of nerve fibers. Detection of these changes may be beyond the sensitivity of the human eye alone, necessitating quantitative approaches in some cases. Although 2-dimensional (2D) histomorphometry can provide additional information and is more sensitive than qualitative evaluation alone, the results are not always representative of the entire tissue and assumptions about the tissue can lead to bias, or inaccuracies, in the data. Design-based stereology provides 3D estimates of number, volume, surface area, or length, and stereological principles can be applied to peripheral nervous system tissues to obtain accurate and precise estimates, such as neuron number and size, axon number, and total intraepidermal nerve fiber length. This review describes practical stereological approaches to 3 compartments of the peripheral nervous system: ganglia, peripheral nerves, and intraepidermal nerve fibers.


Author(s):  
P.K. Thomas

ABSTRACT:Rational treatment of diabetic polyneuropathy depends upon establishing its cause, which is at present unknown. A number of animal models of diabetes have been examined and although abnormalities are detectable in the peripheral nervous system they do not duplicate the degenerative neuropathy encountered in the human. The relevance of these abnormalities is therefore uncertain, although they may reflect the earlier changes in man. For human neuropathy, it is likely that vascular lesions or an abnormal susceptibility to mechanical injury are responsible for focal neuropathies. The evidence that ischaemia and hypoxia are responsible for the diffuse sensory neuropathy and autonomic polyneuropathy is still equivocal and it is often difficult to establish whether the vascular changes are primary or secondary. Metabolic explanations, such as sorbitol accumulation in nerve, have not so far been adequately validated by responses to treatment. The manifestations of diabetic neuropathy are complex and a single explanation should not be sought.


Sign in / Sign up

Export Citation Format

Share Document