scholarly journals Methods to Test the “Dimming Effect” Produced by a Decrease in the Number of Photons Received from Receding Light Sources

2021 ◽  
Author(s):  
Mark Zilberman ◽  

The hypothetical “Dimming effect” describes the change of the number of photons arriving from a receding light source per unit of time. In non-relativistic systems,the "Dimming effect" occurs due to the fact that as light sources move away, the distance between the emitter and the receiver constantly increases, and the photons always take longer to reach the receiver. This reduces the number of photons received per time unit compared to the number of emitted photons per time unit. Negligible for speeds incomparable with the speed of light c, the "Dimming effect" can be very significant for speeds above 0.1c. “Dimming effect” can possibly be tested in a physics labor-atory using a moving light source (or mirror) and photon counters located in the travel direction and in opposite direction. It can possibly also be tested utilizing the orbital movement of the Earth around the Sun. If confirmed, “Dimming effect” would allow astronomers to adjust values of the "Standard Candles", which are critical in cosmological models. Absence of “Dimming effect” will mean that the number of photons arriving per time unit does not depend on the relative speed of light source and observer,which is not so apparent

2020 ◽  
Author(s):  
Mark Zilberman

The hypothetical “Dimming Effect” describes the change of the number of photons arriving from a moving light source per unit of time. In non-relativistic systems, the “Dimming effect” may occur due to the growing distance of light sources moving away from the receiver. This means that due to the growing distance, the photons continuously require more time to reach the receiver, which reduces the number of received photons per time unit compared to the number of emitted photons. Understandably, the proposed “Dimming effect” must be tested (confirmed or rejected) through observations. a. This article provides the formula for the calculation of “Dimming effect” values using the redshift parameter Z widely used in astronomy. b. The “Dimming effect” can possibly be detected utilizing the orbital movement of the Earth around the Sun. In accordance to the “Dimming effect”, observers on Earth will view 1.0001 more photons per time unit emitted by stars located near the ecliptic plane in the direction of the Earth orbiting the Sun. And, in contrast, observers will view only 0.9999 photons per time unit emitted by stars located near the ecliptic plane in the direction opposite to the Earth orbiting the Sun. Calculating precise measurements of the same stars within a 6-month period can possibly detect this difference. These changes in brightness are not only for specific stars, as the change in brightness takes place for all stars near the ecliptic in the direction of the Earth’s orbit around the Sun and in the opposite direction. c. The “Dimming effect” can possibly be detected in a physics laboratory using a moving light source (or mirror) and photon counters located in the direction of travel and in the opposite direction. d. In theory, Dilation of time can also be used for testing the existence of the “Dimming effect.” However, in experiments on Earth this effect appears in only the 14th digit after the decimal point and testing does not appear to be feasible. e. Why is it important to test the “Dimming effect?” If confirmed, it would allow astronomers to adjust values of "Standard Candles" used in astronomy. Since “Standard Candles” are critical in various cosmological models, the “Dimming effect” can correct models and/or reveal and support new models. If it is proved that the “Dimming effect” does not exist, it will mean that the number of photons arriving per unit of time does not depend on the speed of the light source and observer, which is not so apparent.


2020 ◽  
Author(s):  
M. Zilberman

Abstract The hypothetical “Dimming Effect” describes the change of the number of photons arriving from a moving light source per unit of time. In non-relativistic systems, the “Dimming effect” may occur due to the growing distance of light sources moving away from the receiver. This means that due to the growing distance, the photons continuously require more time to reach the receiver, which reduces the number of received photons per time unit compared to the number of emitted photons.Understandably, the proposed “Dimming effect” must be tested (confirmed or rejected) through observations.a. This article provides the formula for the calculation of “Dimming effect” values using the redshift parameter Z widely used in astronomy.b. The “Dimming effect” can possibly be detected utilizing the orbital movement of the Earth around the Sun. In accordance to the “Dimming effect”, observers on Earth will view 1.0001 more photons per time unit emitted by stars located near the ecliptic plane in the direction of the Earth orbiting the Sun. And, in contrast, observers will view only 0.9999 photons per time unit emitted by stars located near the ecliptic plane in the direction opposite to the Earth orbiting the Sun. Calculating precise measurements of the same stars within a 6-month period can possibly detect this difference. These changes in brightness are not only for specific stars, as the change in brightness takes place for all stars near the ecliptic in the direction of the Earth’s orbit around the Sun and in the opposite direction.c. The “Dimming effect” can possibly be detected in a physics laboratory using a moving light source (or mirror) and photon counters located in the direction of travel and in the opposite direction.d. In theory, Dilation of time can also be used for testing the existence of the “Dimming effect.” However, in experiments on Earth this effect appears in only the 14th digit after the decimal point and testing does not appear to be feasible.e. Why is it important to test the “Dimming effect?”* If confirmed, it would allow astronomers to adjust values of "Standard Candles" used in astronomy. Since “Standard Candles” are critical in various cosmological models, the “Dimming effect” can correct models and/or reveal and support new models.* If it is proved that the “Dimming effect” does not exist, it will mean that the number of photons arriving per unit of time does not depend on the speed of the light source and observer, which is not so apparent.


Lightspeed ◽  
2019 ◽  
pp. 49-57
Author(s):  
John C. H. Spence

The story of the astronomical observations of James Bradley in the eighteenth century, whose measurements of the small movements of a star throughout the year provided an independent estimate of the speed of the Earth around the Sun relative to the speed of light. His work provided the first experimental evidence in support of Copernicus’s theory that the earth is in motion, and against the idea that it is stationary at the center of the universe. His simple telescope at home, his brilliant idea and perseverance, and his life’s work and influence. The importance of his result for the development of Einstein’s theory of relativity and for theories of the Aether in the following centuries.


Lightspeed ◽  
2019 ◽  
pp. 18-26
Author(s):  
John C. H. Spence
Keyword(s):  
The Sun ◽  

The story of the first measurement of the speed of light by Ole Roemer in 1676. Galileo had discovered the moons of Jupiter with his new telescope, and proposed using observations of their eclipse every forty-two hours as a universal clock for our planet, since they could be seen from practically anywhere. This would keep track of the time at home, and so give a traveller his or her local longitude. (The King of Spain had offered a prize for longitude determination to avoid disasterous shipwrecks.) Roemer noticed that the eclipses were sometimes a little late, which he concluded was due to the time it took light to get from Saturn to Earth and the movement of the Earth between eclipses. His estimate of the time for light to travel from the Sun to Earth was quite accurate. Roemer’s remarkable life story and many other achievements are told.


It has long been known that the diurnal variation of the magnetic needle is in an opposite direction in the southern, to what it is in the northern hemisphere; and it was therefore proposed as a pro­blem by Arago, Humboldt and others, to determine whether there exists any intermediate line of stations on the earth where those diurnal variations disappear. The results recorded in the present paper are founded on observations made at St. Helena during the five consecutive years, from 1841 to 1845 inclusive; and also on similar observations made at Singapore, in the years 1841 and 1842; and show that at these stations, which are intermediate between the northern and southern magnetic hemispheres, the diurnal variations still take place; but those peculiar to each hemisphere prevail at opposite seasons of the year, apparently in accordance with the position of the sun with relation to the earth’s equator.


2015 ◽  
Vol 7 (6) ◽  
pp. 49
Author(s):  
Zifeng Li

<p class="1Body">What is the nature of light? Particle or wave? How fast is the speed of light? These are all basic questions of physics. From points of philosophy and observation, it is demonstrated that the nature of light is a kind of particle, and many photons’ group behavior is of characteristics similar to the wave. Reflection, diffusion, refraction and transmission of light are all phenomenon of matter’s attraction, absorption and re-emission of photons. Until now, there is no accurate means of measuring the speed of light. For the speed of starlight relative to the earth, the closer to the earth, the closer to the speed of light emitted by a light source on the earth relative to the earth. Physics field is composed of space and tiny particles.</p>


2004 ◽  
Vol 19 (08) ◽  
pp. 639-644 ◽  
Author(s):  
MANUEL TORRES ◽  
HECTOR VUCETICH

Variable speed of light (VSL) theories may lead to large violations of charge conservation that can be written in terms of a dimensionless parameter λ. Similarly, charge non-conservation can arise in theories that break down Einstein's Equivalence Principle, parametrized in terms of Γ0. It is shown that for such theories, the motion of the Earth with respect to the Sun would produce a seasonal variation for the SAGE and GALLEX–GNO experiments. Analyzing the reported counting rates for these experiments, a very stringent bound |λ|≤2×10-19 is obtained, some 109 times smaller than previous ones. For the second example, the corresponding bound is |Γ0|<10-18, which represents an improvement of 107 on the previous result. Furthermore, assuming that the previous conditions apply, the existing bound for the lifetime of the 71 Ga →71 Ge charge-nonconserving decay is improved as: τ CNC ≥1.4×1027 years. Similarly a new upper limit for the ratio of the charge-nonconserving to the normal weak decay of the neutron is obtained: [Formula: see text].


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


2019 ◽  
pp. 101-107
Author(s):  
Sergei A. Stakharny

This article is a review of the new light source – organic LEDs having prospects of application in general and special lighting systems. The article describes physical principles of operation of organic LEDs, their advantages and principal differences from conventional non-organic LEDs and other light sources. Also the article devoted to contemporary achievements and prospects of development of this field in the spheres of both general and museum lighting as well as other spheres where properties of organic LEDs as high-quality light sources may be extremely useful.


2019 ◽  
Vol 15 (1) ◽  
pp. 73-77
Author(s):  
Valentina V. Ukraintseva ◽  
Keyword(s):  
The Sun ◽  

Sign in / Sign up

Export Citation Format

Share Document