scholarly journals Naringenin protects cerebral ischemic injury by inhibiting mitochondria-mediated neuronal apoptosis in acute ischemic stroke rats

2020 ◽  
Vol 77 (4) ◽  
pp. 609-617
Author(s):  
Jing Shang
2018 ◽  
Vol 219 ◽  
pp. 117-125 ◽  
Author(s):  
Xiaoqin Zhang ◽  
Yiping Zhang ◽  
Songqi Tang ◽  
Lishuang Yu ◽  
Youqin Zhao ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zi-xian Chen ◽  
Qing-qing Xu ◽  
Chun-shuo Shan ◽  
Yi-hua Shi ◽  
Yong Wang ◽  
...  

Borneol, a natural product in the Asteraceae family, is widely used as an upper ushering drug for various brain diseases in many Chinese herbal formulae. The blood-brain barrier (BBB) plays an essential role in maintaining a stable homeostatic environment, while BBB destruction and the increasing BBB permeability are common pathological processes in many serious central nervous system (CNS) diseases, which is especially an essential pathological basis of cerebral ischemic injury. Here, we aimed to conduct a systematic review to assess preclinical evidence of borneol for experimental ischemic stroke as well as investigate in the possible neuroprotective mechanisms, which mainly focused on regulating the permeability of BBB. Seven databases were searched from their inception to July 2018. The studies of borneol for ischemic stroke in animal models were included. RevMan 5.3 was applied for data analysis. Fifteen studies investigated the effects of borneol in experimental ischemic stroke involving 308 animals were ultimately identified. The present study showed that the administration of borneol exerted a significant decrease of BBB permeability during cerebral ischemic injury according to brain Evans blue content and brain water content compared with controls (P<0.01). In addition, borneol could improve neurological function scores (NFS) and cerebral infarction area. Thus, borneol may be a promising neuroprotective agent for cerebral ischemic injury, largely through alleviating the BBB disruption, reducing oxidative reactions, inhibiting the occurrence of inflammation, inhibiting apoptosis, and improving the activity of lactate dehydrogenase (LDH) as well as P-glycoprotein (P-GP) and NO signaling pathway.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90780 ◽  
Author(s):  
Tengfei Wang ◽  
Yuxiang Li ◽  
Yongsheng Wang ◽  
Ru Zhou ◽  
Lin Ma ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jialin He ◽  
Jianyang Liu ◽  
Yan Huang ◽  
Xiangqi Tang ◽  
Han Xiao ◽  
...  

Ischemic stroke is a leading cause of death worldwide; currently available treatment approaches for ischemic stroke are to restore blood flow, which reduce disability but are time limited. The interruption of blood flow in ischemic stroke contributes to intricate pathophysiological processes. Oxidative stress and inflammatory activity are two early events in the cascade of cerebral ischemic injury. These two factors are reciprocal causation and directly trigger the development of autophagy. Appropriate autophagy activity contributes to brain recovery by reducing oxidative stress and inflammatory activity, while autophagy dysfunction aggravates cerebral injury. Abundant evidence demonstrates the beneficial impact of mesenchymal stem cells (MSCs) and secretome on cerebral ischemic injury. MSCs reduce oxidative stress through suppressing reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation and transferring healthy mitochondria to damaged cells. Meanwhile, MSCs exert anti-inflammation properties by the production of cytokines and extracellular vesicles, inhibiting proinflammatory cytokines and inflammatory cells activation, suppressing pyroptosis, and alleviating blood–brain barrier leakage. Additionally, MSCs regulation of autophagy imbalances gives rise to neuroprotection against cerebral ischemic injury. Altogether, MSCs have been a promising candidate for the treatment of ischemic stroke due to their pleiotropic effect.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yingjia Guo ◽  
Junpeng Zhou ◽  
Xianglong Li ◽  
Ying Xiao ◽  
Jingyao Zhang ◽  
...  

Elderly patients suffer more brain damage in comparison with young patients from the same ischemic stroke. The present study was undertaken to test the hypothesis that suppressed hypoxia-inducible factor-1 (HIF-1) transcription activity is responsible for defective recovery after ischemic stroke in the elders. Aged and young rats underwent 1-h transient middle cerebral artery occlusion (MCAO) to produce cerebral ischemic injury. The initial cerebral infarct volume in the young gradually declined as time elapsed, but in the aged rats remained the same. The defective recovery in the aged was associated with depressed angiogenesis and retarded neurorestoration. There was no difference in HIF-1α accumulation in the brain between the two age groups, but the expression of HIF-1 regulated genes involved in cerebral recovery was suppressed in the aged. In confirmation, inhibition of HIF-1 transactivation of gene expression in the young suppressed cerebral recovery from MCAO as the same as that observed in the aged rats. Furthermore, a copper metabolism MURR domain 1 (COMMD1) was significantly elevated after MCAO only in the brain of aged rats, and suppression of COMMD1 by siRNA targeting COMMD1 restored HIF-1 transactivation and improved recovery from MCAO-induced damage in the aged brain. These results demonstrate that impaired HIF-1 transcription activity, due at least partially to overexpression of COMMD1, is associated with the defective cerebral recovery from ischemic stroke in the aged rats.


2015 ◽  
Vol 53 (6) ◽  
pp. 3702-3713 ◽  
Author(s):  
Ming-Hsiu Wu ◽  
Chung-Ching Chio ◽  
Kuen-Jer Tsai ◽  
Ching-Ping Chang ◽  
Nan-Kai Lin ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 501 ◽  
Author(s):  
Ran Kim ◽  
Daeun Hur ◽  
Hyoung Kyu Kim ◽  
Jin Han ◽  
Natalia P. Mishchenko ◽  
...  

Of late, researchers have taken interest in alternative medicines for the treatment of brain ischemic stroke, where full recovery is rarely seen despite advanced medical technologies. Due to its antioxidant activity, Echinochrome A (Ech A), a natural compound found in sea urchins, has acquired attention as an alternative clinical trial source for the treatment of ischemic stroke. The current study demonstrates considerable potential of Ech A as a medication for cerebral ischemic injury. To confirm the effects of Ech A on the recovery of the injured region and behavioral decline, Ech A was administered through the external carotid artery in a rat middle cerebral artery occlusion model after reperfusion. The expression level of cell viability-related factors was also examined to confirm the mechanism of brain physiological restoration. Based on the results obtained, we propose that Ech A ameliorates the physiological deterioration by its antioxidant effect which plays a protective role against cell death, subsequent to post cerebral ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document