scholarly journals New Loss of Viable Myocardium by Non-invasive Imaging Technique

2020 ◽  
Author(s):  
Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2015 ◽  
Vol 11 (1) ◽  
pp. 2897-2908
Author(s):  
Mohammed S.Aljohani

Tomography is a non-invasive, non-intrusive imaging technique allowing the visualization of phase dynamics in industrial and biological processes. This article reviews progress in Electrical Capacitance Volume Tomography (ECVT). ECVT is a direct 3D visualizing technique, unlike three-dimensional imaging, which is based on stacking 2D images to obtain an interpolated 3D image. ECVT has recently matured for real time, non-invasive 3-D monitoring of processes involving materials with strong contrast in dielectric permittivity. In this article, ECVT sensor design, optimization and performance of various sensors seen in literature are summarized. Qualitative Analysis of ECVT image reconstruction techniques has also been presented.


2015 ◽  
Vol 121 (3) ◽  
pp. 891-901 ◽  
Author(s):  
T. Vitorino ◽  
A. Casini ◽  
C. Cucci ◽  
M. J. Melo ◽  
M. Picollo ◽  
...  

Author(s):  
Anoop B. N. ◽  
G. N. Girish ◽  
Sudeep P. V. ◽  
Jeny Rajan

Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology. The presence of speckle affects the quality of OCT images. Despeckling is necessary to improve its visual quality, and it is an integral part of software packages used for the computerized analysis of OCT. Even though a few methods for despeckling OCT are available in the literature, a cross-comparison of their performance is not known to be available. In this chapter, the techniques available in the literature for despeckling the OCT images have been identified. The results of the despeckling algorithms are compared both qualitatively and quantitatively by concerning the noise suppression capability and feature preservation. Among the available techniques, iterative adaptive unbiased (IAUB) filter is found to be superior as far as its performance regarding despeckling on retinal OCT images.


Author(s):  
Nikant Sabharwal ◽  
Chee Yee Loong ◽  
Andrew Kelion

Introduction 2Important milestones 4Relation to other imaging modalities 6The cardiologist of the early twenty-first century takes for granted the wide range of imaging modalities at his/her disposal, but it was not always so. At the beginning of the 1970s, invasive cardiac catheterization was the only reliable cardiac imaging technique. Subsequently, nuclear cardiology investigations led the way in the non-invasive assessment of cardiac disease. Some of the principles underlying these investigations [e.g. electrocardiogram (ECG)-triggered gating] have also been of great importance in the development of other imaging modalities....


2020 ◽  
Vol 309 ◽  
pp. 04016
Author(s):  
Yang Bai ◽  
Chuncheng Zhang ◽  
Lvming Zeng ◽  
Guodong Liu

A photoacoustic microscope system based on virtual instrument development environment is presented, including ultrasonic sensor, digital oscilloscope, laser diode, personal calculation and other hardware platforms. and developed supporting software and image reconstruction algorithms. In the subcutaneous angiography experiment, the distribution characteristics of the ear blood vessels in mouse were completely reproduced perfectly, and the spatial resolution of the system can reach 14um. The system and method can potentially to develop into a non-invasive biological tissue structure and functional imaging technique.


Sign in / Sign up

Export Citation Format

Share Document