Theca Lutein Cell

2020 ◽  
Author(s):  
Keyword(s):  
1968 ◽  
Vol 58 (3) ◽  
pp. 481-496 ◽  
Author(s):  
Poul Hjortkjær Pedersen ◽  
Jørgen Falck Larsen

ABSTRACT The ultrastructure of granulosal lutein cells of 13 corpora lutea in early human pregnancy was studied. The predominant cytoplasmic element was the smooth endoplasmic reticulum. No convincing signs of degeneration of the lutein cells could be demonstrated within the first 14 weeks of pregnancy, as the mitochondria as well as the rough and smooth endoplasmic reticulum were well preserved. However, lysosomes may be slightly more numerous in older specimens and the subendothelial space increases with the age of gestation. A particular type of multilaminated structure one to five micron in diameter was observed, particularly in the earliest specimens. The possible intracellular location of steroid synthesis is discussed.


1966 ◽  
Vol 31 (3) ◽  
pp. 501-516 ◽  
Author(s):  
E. Joan Blanchette

The granulosa follicle cell of the Graafian follicle of the rabbit ovary differentiates into a lutein cell involved in steroid synthesis. Cytological events which occur within the granulosa cell of the normally stimulated follicle prior to ovulation have been duplicated by the intrafollicular injection of exogenous gonadotrophin. The luteinization of the granulosa cells involves the accumulation of 250- to 300-A, electron-opaque, spherical granules, dispersed within the cytoplasmic matrix, which have been identified as glycogen with the PAS-staining procedure. Further development of the granulosa cell following ovulation involves an increase in cell size, a decrease in the number of RNP particles, and an accumulation of an abundant system of intracellular membranes (agranular endoplasmic reticulum). Glycogen granules first appear in the granulosa cells as the separate, monoparticulate form. After follicle rupture and the formation of agranular endoplasmic reticulum, glycogen particles are present in a rosette arrangement within membrane-bounded vacuoles. The rosette arrangement of glycogen particles is also found dispersed within the cytoplasmic matrix of the lutein cell during the later stages of the cell life-span. Injection of luteinizing hormone or human chorionic gonadotrophin into a mature follicle also produces a marked accumulation of monoparticulate glycogen in the majority of granulosa cells, within 30 min. Cytoplasmic extensions which contain the glycogen masses are noticeably free of RNP particles.


1962 ◽  
Vol 12 (1) ◽  
pp. 101-113 ◽  
Author(s):  
Allen C. Enders

Corpora lutea from the period of delayed implantation and from early postimplantation stages of the armadillo, mink, and rat were fixed in buffered osmium tetroxide-sucrose or potassium permanganate. After rapid dehydration, the portions of the corpora lutea were embedded in either methacrylate or epoxy resin. Examination of the lutein cells by electron microscopy revealed the presence, in the better preserved material, of an extensive development of tubular agranular endoplasmic reticulum. Although the membranes of the endoplasmic reticulum are the most striking feature of the lutein cells of both stages of the three animals examined, very numerous large mitochondria with cristae that exhibit a variety of forms tending toward villiform, and protrusions and foldings of the lutein cell margins on the pericapillary space are also characteristic of these cells. Certain minor differences in the lutein cells of the species examined are also noted. No indications of conversion of mitochondria into lipid, of accumulation of lipid in the Golgi area, or of the protrusion of lutein cells into spaces between the endothelial cells, as suggested by other authors, were noted in these preparations. Some of the difficulties inherent in the visualization of the secretory activity of cells producing steroid hormones are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document