scholarly journals Segment Polarity Protein Dishevelled Homolog DVL-1

2020 ◽  
Author(s):  
Keyword(s):  
Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 129-135
Author(s):  
Alfonso Martinez-Arias ◽  
Philip W. Ingham

Mutations of the segment polarity group in Drosophila melanogaster produce additional denticles with reversed polarity in every segment of the larval cuticle. We have investigated the effect of mutations in different elements of the bithorax complex on the segmental identity of these additional pattern elements. Our results suggest that they are derived, primarily, from the anterior compartment of each segment.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3253-3261 ◽  
Author(s):  
Nirupama Deshpande ◽  
Rainer Dittrich ◽  
Gerhard M. Technau ◽  
Joachim Urban

The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 273-284
Author(s):  
William D Tracey ◽  
Xiangqun Ning ◽  
Martin Klingler ◽  
Sunita G Kramer ◽  
J Peter Gergen

Abstract The specific functions of gene products frequently depend on the developmental context in which they are expressed. Thus, studies on gene function will benefit from systems that allow for manipulation of gene expression within model systems where the developmental context is well defined. Here we describe a system that allows for genetically controlled overexpression of any gene of interest under normal physiological conditions in the early Drosophila embryo. This regulated expression is achieved through the use of Drosophila lines that express a maternal mRNA for the yeast transcription factor GAL4. Embryos derived from females that express GAL4 maternally activate GAL4-dependent UAS transgenes at uniform levels throughout the embryo during the blastoderm stage of embryogenesis. The expression levels can be quantitatively manipulated through the use of lines that have different levels of maternal GAL4 activity. Specific phenotypes are produced by expression of a number of different developmental regulators with this system, including genes that normally do not function during Drosophila embryogenesis. Analysis of the response to overexpression of runt provides evidence that this pair-rule segmentation gene has a direct role in repressing transcription of the segment-polarity gene engrailed. The maternal GAL4 system will have applications both for the measurement of gene activity in reverse genetic experiments as well as for the identification of genetic factors that have quantitative effects on gene function in vivo.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2673-2685 ◽  
Author(s):  
C. Bertuccioli ◽  
L. Fasano ◽  
S. Jun ◽  
S. Wang ◽  
G. Sheng ◽  
...  

The Drosophila pair-rule gene paired is required for the correct expression of the segment polarity genes wingless, engrailed and gooseberry. It encodes a protein containing three conserved motifs: a homeodomain (HD), a paired domain (PD) and a PRD (His/Pro) repeat. We use a rescue assay in which paired (or a mutated version of paired in which the functions of the conserved motifs have been altered) is expressed under the control of its own promoter, in the absence of endogenous paired, to dissect the Paired protein in vivo. We show that both the HD and the N- terminal subdomain of the PD (PAI domain) are absolutely required within the same molecule for normal paired function. In contrast, the conserved C-terminal subdomain of the PD (RED domain) appears to be dispensable. Furthermore, although a mutation abolishing the ability of the homeodomain to dimerize results in an impaired Paired molecule, this molecule is nonetheless able to mediate a high degree of rescue. Finally, a paired transgene lacking the PRD repeat is functionally impaired, but still able to rescue to viability. We conclude that, while Prd can use its DNA-binding domains combinatorially in order to achieve different DNA-binding specificities, its principal binding mode requires a cooperative interaction between the PAI domain and the homeodomain.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Craig A. Micchelli ◽  
Inge The ◽  
Erica Selva ◽  
Vladic Mogila ◽  
Norbert Perrimon

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 489-497 ◽  
Author(s):  
N.E. Baker

Wingless (wg) is a segment-polarity gene in Drosophila which is related to the murine proto-oncogene int1. In Drosophila embryos, wg transcription defines part of each parasegment. In situ hybridization shows that wg is also expressed in the imaginal discs which give rise to the adult during metamorphosis. Transcripts are localized in the apical cytoplasm of disc cells, and accumulate in different patterns in dorsal and ventral discs. The wgCX3 mutation produces morphological defect in the adult structures derived from these imaginal discs. The results show that wg is involved in the development of the adult, as well as the embryo, but that the imaginal discs do not express this segment-polarity gene in an identical pattern to the embryonic segments.


Development ◽  
1994 ◽  
Vol 120 (5) ◽  
pp. 1151-1161 ◽  
Author(s):  
Y. Zhang ◽  
A. Ungar ◽  
C. Fresquez ◽  
R. Holmgren

Previous studies have shown that the segment polarity locus gooseberry, which contains two closely related transcripts gooseberry-proximal and gooseberry-distal, is required for proper development in both the epidermis and the central nervous system of Drosophila. In this study, the roles of the gooseberry proteins in the process of cell fate specification have been examined by generating two fly lines in which either gooseberry-distal or gooseberry-proximal expression is under the control of an hsp70 promoter. We have found that ectopic expression of either gooseberry protein causes cell fate transformations that are reciprocal to those of a gooseberry deletion mutant. Our results suggest that the gooseberry-distal protein is required for the specification of naked cuticle in the epidermis and specific neuroblasts in the central nervous system. These roles may reflect independent functions in neuroblasts and epidermal cells or a single function in the common ectodermal precursor cells. The gooseberry-proximal protein is also found in the same neuroblasts as gooseberry-distal and in the descendants of these cells.


Sign in / Sign up

Export Citation Format

Share Document