New fixed point of on-orbit calibration scale based on the In-Bi eutectic alloy for application in novel high-stable space-borne standard sources

2021 ◽  
pp. 32-37
Author(s):  
Andrei A. Burdakin ◽  
Valerii R. Gavrilov ◽  
Ekaterina A. Us ◽  
Vitalii S. Bormashov

The problem of ensuring stability of Earth observation space-borne instruments undertaking long-term temperature measurements within thermal IR spectral range is described. For in-flight reliable control of the space-borne IR instruments characteristics the stability of onboard reference sources should be improved. The function of these high-stable sources will be executed by novel onboard blackbodies, incorporating the melt↔freeze phase transition phenomenon, currently being developed. As a part of these works the task of realizing an on-orbit calibration scale within the dynamic temperature range of Earth observation systems 210−350 K based on fixed-point phase transition temperatures of a number of potentially suitable substances is advanced. The corresponding series of the onboard reference blackbodies will be set up on the basis of the on-orbit calibration scale fixed points. It is shown that the achievement of the target lies in carrying out a number of in-flight experiments with the selected fixed points and the prospective onboard fixed-point blackbodies prototypes. The new In-Bi eutectic alloy melt temperature fixed point (~345 K) is proposed as the significant fixed points of the future on-orbit calibration scale. The results of the new fixed point preliminary laboratory studies have been analyzed. The results allowed to start preparation of the in-flight experiments investigating the In-Bi alloy for the purpose of its application in the novel onboard reference sources.

1990 ◽  
Vol 10 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractThe stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 306
Author(s):  
Jesse Daas ◽  
Wouter Oosters ◽  
Frank Saueressig ◽  
Jian Wang

We set up a consistent background field formalism for studying the renormalization group (RG) flow of gravity coupled to Nf Dirac fermions on maximally symmetric backgrounds. Based on Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in a projection including the Einstein–Hilbert action, the fermion anomalous dimension, and a specific coupling of the fermion bilinears to the spacetime curvature. The latter constitutes a mass-type term that breaks chiral symmetry explicitly. Our analysis identified two infinite families of interacting RG fixed points, which are viable candidates to provide a high-energy completion through the asymptotic safety mechanism. The fixed points exist for all values of Nf outside of a small window situated at low values Nf and become weakly coupled in the large Nf-limit. Symmetry-wise, they correspond to “quasi-chiral” and “non-chiral” fixed points. The former come with enhanced predictive power, fixing one of the couplings via the asymptotic safety condition. Moreover, the interplay of the fixed points allows for cross-overs from the non-chiral to the chiral fixed point, giving a dynamical mechanism for restoring the symmetry approximately at intermediate scales. Our discussion of chiral symmetry breaking effects provides strong indications that the topology of spacetime plays a crucial role when analyzing whether quantum gravity admits light chiral fermions.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Parin Chaipunya ◽  
Chirasak Mongkolkeha ◽  
Wutiphol Sintunavarat ◽  
Poom Kumam

We give some initial properties of a subset of modular metric spaces and introduce some fixed-point theorems for multivalued mappings under the setting of contraction type. An appropriate example is as well provided. The stability of fixed points in our main theorems is also studied.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Choonkil Park

Using fixed point method, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equationf(x+2y)+f(x−2y)=4f(x+y)+4f(x−y)−6f(x)+f(2y)+f(−2y)−4f(y)−4f(−y)in non-Archimedean Banach spaces.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Gang Li ◽  
Yongqin Yang ◽  
Mao Ming Jin ◽  
Qinghua Zhang

By using ordered fixed point theory, we set up a new class of GNOVI structures (general nonlinear ordered variational inclusions) with(γG,λ)-weak-GRD mappings, discuss an existence theorem of solution, consider a perturbed Ishikawa iterative algorithm and the convergence of iterative sequences generated by the algorithm, and show the stability of algorithm for GNOVI structures in positive Hilbert spaces. The results in the instrument are obtained.


2007 ◽  
Vol 22 (01) ◽  
pp. 165-179 ◽  
Author(s):  
AUTTAKIT CHATRABHUTI

Motivated by string gas cosmology, we investigate the stability of moduli fields coming from compactifications of string gas on torus with background flux. It was previously claimed that moduli are stabilized only at a single fixed-point in moduli space, a self-dual point of T-duality with vanishing flux. Here, we show that there exist other stable fixed-points on moduli space with nonvanishing flux. We also discuss the more general target space dualities associated with these fixed-points.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Cemil Tunç ◽  
Emel Biçer

We discuss the stability of solutions to a kind of scalar Liénard type equations with multiple variable delays by means of the fixed point technique under an exponentially weighted metric. By this work, we improve some related results from one delay to multiple variable delays.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Qi-Qing Song

This paper studies the stability of fixed points for multi-valued mappings in relation to selections. For multi-valued mappings admitting Michael selections, some examples are given to show that the fixed point mapping of these mappings are neither upper semi-continuous nor almost lower semi-continuous. Though the set of fixed points may be not compact for multi-valued mappings admitting Lipschitz selections, by finding sub-mappings of such mappings, the existence of minimal essential sets of fixed points is proved, and we show that there exists at least an essentially stable fixed point for almost all these mappings. As an application, we deduce an essentially stable result for differential inclusion problems.


Author(s):  
Rehab Noori Shalan ◽  
Shireen R. Jawad ◽  
Alaa Hussien Lafta

This paper discusses the discrete stage–structure prey-predator model involved in the Beddington–DeAngelis type of functional response described by differential equation systems proposed as three-dimensional systems. Furthermore, the predators are divided into two types of populations, namely, mature and immature, along with the prey population. The stability of all possible fixed points is demonstrated by solving our proposed model analytically using the standard lemma and topological properties, which give all possible properties to each fixed point. In the same manner, we identify three fixed points, which are as follows: the origin fixed point, which means there are no species; the axial fixed point, which means the prey population increases logistically with the absence of a predator one (mature and immature populations); and the positive fixed point, which signifies the coexistence of all species. We show that the numerical simulations part is used not only to plot the time series of fixed values, but also, to find and illustrate the theoretical results.


Author(s):  
Dave Lowe ◽  
Louise Wright ◽  
Chris Liller

Recent changes to the SI make it possible to set up a primary temperature scale using established values for certain high-temperature fixed points. As the furnace used with the fixed points can itself have a significant impact on measurements, improving furnace temperature uniformity can help to reduce uncertainties. A thermal model was used to redesign heaters to reduce temperature gradients where the fixed-point cell is positioned in the furnace. A heater optimised for 1325 °C was compared to the standard one with a cobalt carbon high-temperature fixed-point cells, where the cell was installed in the middle, and also moved 10 mm to each end. The modified heater showed reduced melting range, improved plateau run-off and less sensitivity to fixed-point cell position. The improvements will reduce the uncertainties associated with this type of furnace.


Sign in / Sign up

Export Citation Format

Share Document