Measurement of resonance frequency by amplitude and phase methods using digital frequency scanning

2021 ◽  
pp. 51-58
Author(s):  
Valery Ya. Fateev

A theoretical and experimental study of methods for measuring the resonance frequency from the amplitude-frequency and phase-frequency characteristics of the resonator (amplitude and phase methods, respectively) has been carried out. In this case, digital frequency scanning was used to determine the resonant frequency. On the basis of the theory of probabilities, analytical expressions are derived that describe the dependences of systematic and random errors on the position of the resonance frequency in the interval between the nearest discrete frequencies, as well as on the noise level. The reliability of the derived expressions was confirmed in the course of a virtual experiment with a computer model of the resonator. It is also shown that the errors of the amplitude and phase methods for the noise level, at which no more than two discrete frequencies are recorded, practically coincide. However, if more than two discrete frequencies are recorded, then the indicated errors differ significantly, which is demonstrated using the experimental graphs. In this case, the errors in measuring the resonance frequency by the phase method practically do not depend on the frequency tuning step with a decrease in this step and linearly depend on the phase noise level. When measuring the resonance frequency by the amplitude method, the errors decrease with decreasing frequency tuning step, and for this case, an empirical formula is proposed for the dependence of systematic and random errors on the frequency tuning step and the amplitude noise level. The research results can be used in the construction of digital resonance sensors.

1978 ◽  
Vol 48 ◽  
pp. 7-29
Author(s):  
T. E. Lutz

This review paper deals with the use of statistical methods to evaluate systematic and random errors associated with trigonometric parallaxes. First, systematic errors which arise when using trigonometric parallaxes to calibrate luminosity systems are discussed. Next, determination of the external errors of parallax measurement are reviewed. Observatory corrections are discussed. Schilt’s point, that as the causes of these systematic differences between observatories are not known the computed corrections can not be applied appropriately, is emphasized. However, modern parallax work is sufficiently accurate that it is necessary to determine observatory corrections if full use is to be made of the potential precision of the data. To this end, it is suggested that a prior experimental design is required. Past experience has shown that accidental overlap of observing programs will not suffice to determine observatory corrections which are meaningful.


2021 ◽  
Vol 11 (14) ◽  
pp. 6390
Author(s):  
Marcin Maciejewski

The paper presents the research of the SteamVR tracker developed for a man-portable air-defence training system. The tests were carried out in laboratory conditions, with the tracker placed on the launcher model along with elements ensuring the faithful reproduction of operational conditions. During the measurements, the static tracker was moved and rotated in a working area. The range of translations and rotations corresponded to the typical requirements of a shooting simulator application. The results containing the registered position and orientation values were plotted on 3D charts which showed the tracker’s operation. Further analyses determined the values of the systematic and random errors for measurements of the SteamVR system operating with a custom-made tracker. The obtained results with random errors of 0.15 mm and 0.008° for position and orientation, respectively, proved the high precision of the measurements.


2015 ◽  
Vol 77 ◽  
pp. 1-7 ◽  
Author(s):  
Q. Lin ◽  
S.J. Neethling ◽  
K.J. Dobson ◽  
L. Courtois ◽  
P.D. Lee

2013 ◽  
Vol 118 (6) ◽  
pp. 2629-2642 ◽  
Author(s):  
S. Eliasson ◽  
G. Holl ◽  
S. A. Buehler ◽  
T. Kuhn ◽  
M. Stengel ◽  
...  

2013 ◽  
Vol 85 (22) ◽  
pp. 10935-10940 ◽  
Author(s):  
Di Wang ◽  
Friso H. W. van Amerom ◽  
Theresa Evans-Nguyen

Sign in / Sign up

Export Citation Format

Share Document