scholarly journals Conditions of oil and gas formation in the territory of the Eastern and Central Ciscaucasia

Author(s):  
D. D. Ismailov ◽  
S. G. Serov ◽  
R. N. Mustaev ◽  
A. V. Petrov

The results of studies of hydrocarbon systems of the Eastern and Central Ciscaucasia are shown. The research area covers part of the Scythian platform, namely, the northern side of the Terek-Caspian foredeep, the north-eastern part of the East Kuban depression, the Tersko-Kum depression and the Stavropol arch. Based on the results of the work and basin modelling of hydrocarbons generation, emigration and accumulation processes, the reconstruction of the history of oil and gas formation and oil and gas accumulation in the sedimentary cover of the region was completed. The basin modelling of hydrocarbon formation processes in Central and Eastern Ciscaucasia was carried out using the PetroMod (Schlumberger) program complex. The obtained results made it possible to determine the dynamics of organic substance transformation processes, evolution of oil and gas formation zones, time and expected paths of hydrocarbon migration and phase composition and degree of hydrocarbon saturation of the section. The model reliability was corrected by comparing the values of benchmarks (modern reservoir temperatures measured in wells, with their calculated values obtained as a result of modelling). The location of possible foci of hydrocarbon generation in the sedimentary cover, the migration paths, the phase composition of hydrocarbons, the intensity of hydrocarbon saturation within individual tectonic zones and structures were determined. It has been established that the main foci of hydrocarbon generation in the southern part of the studied region are located in the Chechen depression (Tersko-Caspian deep), on the platform part–in the zone of the Manych deep and Nogai stage.

2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


2021 ◽  
Author(s):  
Ayrat Bashirov ◽  
Ilya Galas ◽  
Marat Nazyrov ◽  
Dmitry Kuznetsov ◽  
Azamat Akkuzhin

Abstract In many oil and gas provinces not only in Russia, but throughout the world, carbonate strata make up a significant portion of the sedimentary cover, and large accumulations of hydrocarbons are associated with them. However, the purposeful study of them as reservoirs for hydrocarbons in our country practically began only in the post-war years. In the special petrography laboratory carbonate rocks composing various stratigraphic complexes of almost all oil and gas provinces of the Soviet Union were studied, and in particular, Paleozoic carbonate strata of the Timan-Pechora province, Ural-Volga region, Belarus, Kazakhstan, ancient Riphean-Cambrian formations of Yakutia and relatively young strata of the Late Cretaceous of the northeastern Ciscaucasia. Carbonates are widespread sedimentary rocks. A very significant part of them was formed in the conditions of vast shallow-water marine epicontinental basins. A large number of works are devoted to the study of such deposits. However, issues related to the conditions of formation of carbonate sediments and their postsedimentary changes cannot be considered resolved, as well as the classification of the rocks themselves. The analyzed field is the Osvanyurskoye one. It was discovered in 2007. The field is located in the north-east of the European part of the Russian Federation, 2 km from Usinsk in the Komi Republic. The field is a part of the Timano-Pechora oil and gas province and it is a mature field (fig. 1). The objective was a 2.5m thick layer of the Serpukhov horizon.


Author(s):  
Yang Houqiang ◽  
E. V. Soboleva

In recent years, significant successes have been achieved in the search and exploration of oil and gas reservoirs in the Jurassic deposits on the eastern side of the Fukang depression, which is the least studied part of the Junggar oil and gas Basin. In order to find out the source of hydrocarbon generation, we studied source rocks, oil and oil-bearing sandstones (24 samples from 13 wells) from the Badaowan, Sangonghe, Xishanyao, Toutunhe and Qigu production beds of the Fukang depression research area. Based on these studies, the composition of the organic matter of the Jurassic source rocks, the properties and molecular composition of oils, as well as the characteristics of the composition of biomarkers in them are examined in detail. The results of research and interpretation of the data showed that the mudstones of the Badaowan formation were source rocks of oil from the Gumudi zone, the Fukan depression, the Bajiahai ledge and the Shaqi ledge.


Author(s):  
Е.А. Данилова

В 2021 году А.А. Драгуновым при помощи системно-геодинамического дешифрирования были выявлены Восточно-Оренбургский и Западно-Оренбургский геодинамически активные очаги генерации углеводородов Оренбургского нефтегазоконденсатного месторождения. Было предположено, что ряд малых залежей юго-запада Оренбургской области также получают от них подпитку. Целью представленной работы являлась попытка проследить вышеуказанные очаги генерации углеводородов в фундаменте и осадочном чехле на основе переинтерпретации временных разрезов региональных сейсмических профилей. Методы работы. Выделение тектонических нарушений проводилось вручную с применением авторских методических приемов приближений и последовательной детализации. После чего выполнялось системное обобщение и анализ полученных результатов в свете перспектив нефтегазоносности юго-запада Оренбургской области. Результаты работы. В результате работ было рассмотрено глубинное строение очагов, отмечены сейсмогеологические особенности их обнаружения. В местах картирования очагов генерации на временных разрезах зафиксированы неотектонические разломы «цветкового» типа, хаотическая вертикально направленная локально усиленная сейсмическая запись под ними ниже отражающего горизонта, отождествляемого с породами фундамента. Прослежена связь глубинных разломов и связанных с ними новейших оперяющих разломов с солянокупольными структурами кунгурского возраста. По результатам комплексного геологического анализа структурных построений выявлена схематическая сеть неотектонических разломов фундамента, судя по которой, Оренбургское нефтегазоконденсатное месторождение и другие, более мелкие месторождения углеводородов и выявленные сейсморазведочными работами структуры юго-запада Оренбургской области имеют закономерное распределение внутри крупной радиально-концентрической структуры диаметром около 180 км. Данная структура, вероятно, представляет собой зону разуплотнения в фундаменте, в пределах которой в осадочном чехле образовались перспективные в плане нефтегазоносности структуры. Уникальное и самое крупное в пределах юго-запада Оренбургской области Оренбургское месторождение находится в центре макроструктуры, являясь, возможно, результатом работы главных очагов генерации УВ в фундаменте. Вдоль радиальных и концентрических разломов сосредоточены более мелкие месторождения углеводородов. Кроме того, Оренбургское месторождение приурочено к зоне наложения двух концентров, что, возможно, является значительным фактором при обнаружении крупных месторождений. В качестве выводов даны рекомендации для дальнейших исследований и поиска возможных геодинамически активных очагов генерации углеводородов в пределах Русской платформы In 2021, A.A. Dragunov, using system-geodynamic decoding, identified the East-Orenburg and West-Orenburg geodynamically active centers of hydrocarbon generation of the Orenburg oil and gas condensate field. It was assumed that a number of small deposits in the south-west of the Orenburg region also receive recharge from them. The aim of the presented work was an attempt to trace the above-mentioned sources of hydrocarbon generation in the foundation and sedimentary cover on the basis of reinterpretation of time sections of regional seismic profiles. Methods. The selection of tectonic disturbances was carried out manually using the author's methodological techniques of approximations and sequential detailing. After that, a systematic generalization and analysis of the results obtained was carried out in the light of the prospects for oil and gas potential of the south-west of the Orenburg region. Results. As a result of the work, the deep structure of the foci was considered, the seismogeological features of their detection were noted. Neotectonic faults of the "flower" type, chaotic vertically directed locally enhanced seismic recording under them below the reflecting horizon identified with the basement rocks were recorded in the places of mapping the generation centers on time sections. The connection of deep faults and the newest feathering faults associated with them with salt-dome structures of the Kungur age is traced. According to the results of a comprehensive geological analysis of structural structures, a schematic network of neotectonic basement faults has been identified, judging by which the Orenburg oil and gas condensate field and other smaller hydrocarbon deposits and the structures identified by seismic surveys in the southwest of the Orenburg region have a regular distribution within a large radial-concentric structure with a diameter of about 180 km. This structure probably represents a zone of decompression in the foundation, within which promising structures in terms of oil and gas potential were formed in the sedimentary cover. The Orenburg deposit, which is unique and the largest within the south-west of the Orenburg Region, is located in the center of the macrostructure, possibly being the result of the work of the main centers of HC generation in the foundation. Smaller hydrocarbon deposits are concentrated along the radial and concentric faults. In addition, the Orenburg field is confined to the zone of overlap of two concenters, which is probably a significant factor in the discovery of large deposits. As conclusions, recommendations are given for further research and search for possible geodynamically active centers of hydrocarbon generation within the Russian platform.


2001 ◽  
Vol 41 (1) ◽  
pp. 91 ◽  
Author(s):  
T. Bernecker ◽  
M.A. Woollands ◽  
D. Wong ◽  
D.H. Moore ◽  
M.A. Smith

After 35 years of successful exploration and development, the Gippsland Basin is perceived as a mature basin. Several world class fields have produced 3.6 billion (109) BBL (569 GL) oil and 5.2 TCF (148 Gm3) gas. Without additional discoveries, it is predicted that further significant decline in production will occur in the next decade.However, the Gippsland Basin is still relatively underexplored when compared to other prolific hydrocarbon provinces. Large areas are undrilled, particularly in the eastern deepwater part of the basin. Here, an interpretation of new regional aeromagnetic and deep-water seismic data sets, acquired through State and Federal government initiatives, together with stratigraphic, sedimentological and source rock maturation modelling studies have been used to delineate potential petroleum systems.In the currently gazetted deepwater blocks, eight structural trapping trends are present, each with a range of play types and considerable potential for both oil and gas. These include major channel incision plays, uplifted anticlinal and collapsed structures that contain sequences of marine sandstones and shales (deepwater analogues of the Marlin and Turrum fields), as well as large marine shale-draped basement horsts.The study has delineated an extensive near-shore marine, lower coastal plain and deltaic facies association in the Golden Beach Subgroup. These Late Cretaceous strata are comparable to similar facies of the Tertiary Latrobe Siliciclastics and extend potential source rock distribution beyond that of previous assessments. In the western portion of the blocks, overburden is thick enough to drive hydrocarbon generation and expulsion. The strata above large areas of the source kitchen generally dip to the north and west, promoting migration further into the gazetted areas.Much of the basin’s deepwater area, thus, shares the deeper stratigraphy and favourable subsidence history of the shallow water producing areas. Future exploration and production efforts will, however, be challenged by the 200–2500 m water-depths and local steep bathymetric gradients, which affect prospect depth conversion and the feasibility of development projects in the case of successful exploration.


Author(s):  
Igor A. Gubin ◽  
◽  
Alexey E. Kontorovich ◽  
Andrey M. Fomin ◽  
◽  
...  

Based on geological and geophysical data, such as deep drilling, well logging, seismic surveys CDP-2D, DSS, SK-VSP a sedimentary cover structural model of the Vilyui hemisineclise to the lower Cambrian roof is constructed. According to seismic data interpretation, the ubiquitous development of the oil and gas source Kuonamka formation is predicted within the internal boundaries of the Vilyui hemisyneclise, where it formed an extensive center of hydrocarbon generation. Clinoform-built Middle Cambrian rocks (Maysky stage) overlie Kuonamka formation. The reservoirs development in the Maysky stage rocks is substantiated, a forecast map of porosity coefficients is generated.


2012 ◽  
Vol 616-618 ◽  
pp. 64-68
Author(s):  
Na Wang ◽  
Shuang Fang Lu ◽  
Dian Shi Xiao

There are great oil and gas exploration prospect in south of Daqing Placanticline, with unclear understanding of source rock and accumulation model, the progress of oil exploration is restricted. To definite the source of oil and gas, according to chromatography data and analysis data, combined with potential of hydrocarbon generation and expulsion, oil-gas migration pathway, the hydrocarbon migration and accumulation model is proposed. It can be concluded that the oil from Putaohua reservoir in the south of Daqing Placanticline area mainly come from K2qn1 source rock locally, while the hydrocarbon sources of K2qn1 in the east and west of the depression makes small contribution to the research area. Migrate in source area is the main hydrocarbon migration and accumulation mode. Re-define the oil source of Putaohua reservoir can help enhance the cognition of the hydrocarbon accumulation condition and accumulation model, in order to direct the research for the accumulation and distribution principle of oil and gas exploration and favorable area prediction in the future.


Sign in / Sign up

Export Citation Format

Share Document