scholarly journals In-situ x-ray scattering studies of Ag nano-structures

2016 ◽  
Author(s):  
◽  
Yiyao Chen

When metals are synthesized on the nanoscale, new physics can arise in the growth process as quantum confinement of the conduction electrons, known as quantum size effects, can lead to preferred heights of metallic nanoscale islands. Despite a significant amount of prior research, there has been a poor understanding of the growth behavior of the simple noble metal, Ag, on the Si(111)7x7 substrate and researchers have been unable to connect its growth morphology to quantum size effects. This dissertation investigated the growth of Ag on Si(111)7x7, in situ and in ultra-high vacuum, using synchrotron x-ray scattering. Because of the unique ability of this technique to explore the structure of a buried interface on the atomic scale, these studies led to a clear understanding of the role of quantum size effects in the growth behavior of this system. The studies address the epitaxial relationship between Ag and the substrate as well as the transition from the wetting layer to the growth of nanoscale islands. It is found that islands have a minimum thickness of three Ag atomic layers, which is in contrast to the bilayer on top of a wetting layer that has been reported in previous scanning tunneling microscopy studies. Ag islands are found to form after the completion of the Ag/Si(111)7x7 wetting layer and they convert the underlying wetting layer into the FCC structure of the island. The observed preference of the Ag islands is explained by the energy per area of the island, which derives from quantum confinement effects, and its two phase coexistence with the wetting layer. For thicker island heights, it is found that the distribution of island heights refl ect the minimum thickness of three layers. The height fluctuations are observed to exhibit a Poisson-like distribution where only the low heights in the fl uctuation spectrum deviate from a Poisson distribution. A model of the height distribution is presented. Techniques for exploring buried nanoscale vacancy defects in metals using diffuse x-ray scattering were also explored in this dissertation. Strain fields due to nanoscale vacancy clusters located below a surface were explored through analytical modeling of elastic displacements as well from results of accelerated molecular dynamics simulations. A method for numerically calculating diffuse scattering from nanoscale vacancy clusters was also explored. As new technologies continue to exploit thin-film metals on nanoscale dimensions, this investigation provides important new understanding about how metals grow on the nanoscale.

2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Author(s):  
Ilya V. Roslyakov ◽  
Andrei P. Chumakov ◽  
Andrei A. Eliseev ◽  
Alexey P. Leontiev ◽  
Oleg V. Konovalov ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1764
Author(s):  
Lison Rocher ◽  
Andrew S. Ylitalo ◽  
Tiziana Di Luccio ◽  
Riccardo Miscioscia ◽  
Giovanni De Filippo ◽  
...  

In situ synchrotron X-ray scattering was used to reveal the transient microstructure of poly(L-lactide) (PLLA)/tungsten disulfide inorganic nanotubes (WS2NTs) nanocomposites. This microstructure is formed during the blow molding process (“tube expansion”) of an extruded polymer tube, an important step in the manufacturing of PLLA-based bioresorbable vascular scaffolds (BVS). A fundamental understanding of how such a microstructure develops during processing is relevant to two unmet needs in PLLA-based BVS: increasing strength to enable thinner devices and improving radiopacity to enable imaging during implantation. Here, we focus on how the flow generated during tube expansion affects the orientation of the WS2NTs and the formation of polymer crystals by comparing neat PLLA and nanocomposite tubes under different expansion conditions. Surprisingly, the WS2NTs remain oriented along the extrusion direction despite significant strain in the transverse direction while the PLLA crystals (c-axis) form along the circumferential direction of the tube. Although WS2NTs promote the nucleation of PLLA crystals in nanocomposite tubes, crystallization proceeds with largely the same orientation as in neat PLLA tubes. We suggest that the reason for the unusual independence of the orientations of the nanotubes and polymer crystals stems from the favorable interaction between PLLA and WS2NTs. This favorable interaction leads WS2NTs to disperse well in PLLA and strongly orient along the axis of the PLLA tube during extrusion. As a consequence, the nanotubes are aligned orthogonally to the circumferential stretching direction, which appears to decouple the orientations of PLLA crystals and WS2NTs.


2014 ◽  
Vol 47 (6) ◽  
pp. 2078-2080 ◽  
Author(s):  
Monika Witala ◽  
Jun Han ◽  
Andreas Menzel ◽  
Kim Nygård

It is shown that small-angle X-ray scattering from binary liquid mixtures close to the critical point of demixing can be used forin situcharacterization of beam-induced heating of liquid samples. For demonstration purposes, the proposed approach is applied on a well studied critical mixture of water and 2,6-lutidine. Given a typical incident X-ray flux at a third-generation synchrotron light source and using a 1.5 mm-diameter glass capillary as sample container, a beam-induced local temperature increase of 0.45 ± 0.10 K is observed.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2010 ◽  
Vol 649 (1-2) ◽  
pp. 189-197 ◽  
Author(s):  
S.H. Zheng ◽  
K. Krug ◽  
F. Golks ◽  
D. Kaminski ◽  
S. Morin ◽  
...  

1992 ◽  
Vol 283 ◽  
Author(s):  
R. Tsu ◽  
L. Ioriatti ◽  
J. F. Harvey ◽  
H. Shen ◽  
R. A. Lux

ABSTRACTThe reduction of the dielectric constant due to quantum confinement is studied both experimentally and theoretically. Angle resolved ellipsometry measurements with Ar- and He-Ne-lasers give values for the index of refraction far below what can be accounted for from porosity alone. A modified Penn model to include quantum size effects has been used to calculate the reduction in the static dielectric constant (ε) with extreme confinement. Since the binding energy of shallow impurities depends inversely on ε2, the drastic decrease in the carrier concentration as a result of the decrease in ε leads to a self-limiting process for the electrochemical etching of porous silicon.


Sign in / Sign up

Export Citation Format

Share Document