scholarly journals Air-side heat transfer enhancement by self-agitators

2019 ◽  
Author(s):  
◽  
Kuojiang Li

Airfoil-based self-agitators (AFAs), bio-inspired rectangular-shaped self-agitators (RSAs), and caudal-fin inspired hourglass-shaped self-agitators (CHSAs) were installed inside plate-fin heat exchanger. The heat transfer enhancement and pressure drop characteristics of these AFAs, RSAs, CHSAs design were experimentally investigated and compared with the clean channel case. We found that the self-agitators vibrate periodically and generate vortices, which enhance flow mixing and thus heat transfer performance. For the chosen heat sink and assigned working conditions, the best heat transfer performance was obtained with four rows AFAs, which caused an 80% increase in overall Nusselt Number over the clean channel at same Reynolds Number, and a 50% rejected heat increase at the same pumping power due to the strong longitudinal vortices generated by the presence of the AFAs. Experiments were conducted at a wide range of Reynolds numbers from 400 to 10000, which covered laminar-transitional-turbulent regime with CHSAs. Experimental correlations of the pressure drop as a function of dimension parameter and friction factor and Nusselt number as functions of dimensionless ones have been proposed. Mutual coupling motions and effects of multiple-row flapping CHSAs in parallel and tandem configurations were studied by using a high-speed camera. A stereo Particle Image Velocimetry (PIV) system was used to conduct detailed flow field measurements to quantify the flow mixing level. For the chosen plate-fin heat exchanger and assigned working conditions, the best heat transfer performance was obtained with six-row CHSAs with a pitch of 25mm, which caused a 200% increase in the Nusselt number over the clean channel at the same Reynolds number. However, the best overall performance was obtained with twelve-row CHSAs with a pitch of 12.5mm, which caused a 68% enhancement in thermal-hydraulic characteristic compared to the clean channel at the same Reynolds number.

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1652
Author(s):  
Mehdi Ghalambaz ◽  
Ramin Mashayekhi ◽  
Hossein Arasteh ◽  
Hafiz Muhammad Ali ◽  
Pouyan Talebizadehsardari ◽  
...  

This paper investigates the convective heat transfer in a heat exchanger equipped with twisted tape elements to examine effects of the twisted tape truncation percentage, pitch value, position and Reynolds number using 3D numerical simulation. A symmetric heat flux is applied around the tube as the studied heat exchanger. Based on the influences in both heat transfer enhancement and pressure drop, the performance evaluation criterion (PEC) is utilized. Inserting twisted tape elements and reducing the pitch value significantly augment the Nusselt number, friction coefficient and PEC number compared to the plain tube. For the best case with a Reynolds number of 1000, the average Nusselt number increases by almost 151%, which is the case of fully fitted twisted tape at a pitch value of L/4. Moreover, increasing the twisted tape truncation percentage reduces both heat transfer and pressure drop. Furthermore, the highest heat transfer rate is achieved when the truncated twisted tape is located at the entrance of the tube. Finally, it is concluded that for P = L, L/2, L/3 and L/4, the optimum cases from the viewpoint of energy conservation are twisted tapes with truncation percentages of 75, 50, 50 and 0%, in which the related PEC numbers at a Reynolds number of 1000 are almost equal to 1.08, 1.24, 1.4 and 1.76, respectively.


1970 ◽  
Vol 40 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Asharful Islam ◽  
A. K. Mozumder

Heat transfer performance of T-section internal fins in a circular tube has been experimentally investigated. The T-finned tube was heated by electricity and was cooled by fully developed turbulent air. Inside wall temperatures and pressure drop along the axial distance of the test section at steady state condition were measured for different flows having Reynolds number ranging from 2x104 to 5x104 for both smooth and finned tubes. From the measured data, heat transfer coefficient, Nusselt number and friction factor were calculated. From the measured and calculated values, heat transfer characteristics and fluid flow characteristics of the finned tube are explained; the performance of the finned tube is also evaluated. For finned tube, friction factor on an average was 5 times higher and heat transfer coefficient was 2 times higher than those for smooth tube for similar flow conditions. The finned tube, however, produces significant heat transfer enhancement. Key Words: Heat Transfer, Internal Fin, Reynolds Number, Nusselt Number, Pressure Drop. doi: 10.3329/jme.v40i1.3473 Journal of Mechanical Engineering, Vol. ME40, No. 1, June 2009 54-62


2021 ◽  
Vol 40 (1) ◽  
pp. 286-299
Author(s):  
Behzad Ghobadi ◽  
Farshad Kowsary ◽  
Farzad Veysi

Abstract In this article, the numerical analysis has been carried out to optimize heat transfer and pressure drop in the horizontal channel in the presence of a rectangular baffle and constant temperature in two-dimension. For this aim, the governing differential equation has been solved by computational fluid dynamics software. The Reynolds numbers are in the range of 2,000 < Re < 10,000 and the working fluid is water. While the periodic boundary condition has been applied at the inlet, outlet, and the channel wall, axisymmetric boundary condition has been used for channel axis. For modeling and optimizing the turbulence, k–ω SST model and genetic algorithm have been applied, respectively. The results illustrate that adding a rectangular baffle to the channel enhances heat transfer and pressure drop. Hence, the heat transfer performance factor along with maximum heat transfer and minimum pressure drop has been investigated and the effective geometrical parameters have been introduced. As can be seen, there is an inverse relationship between baffle step and both heat transfer and pressure drop so that for p/d equal to 0.5, 1, and 1.25, the percentage of increase in Nusselt number is 141, 124, and 120% comparing to a simple channel and the increase in friction factor is 5.5, 5, and 4.25 times, respectively. The results of modeling confirm the increase in heat transfer performance and friction factor in the baffle with more height. For instance, when the Reynolds number and height are 5,000 and 3 mm, the Nusselt number and friction factor have been increased by 35% and 2.5 times, respectively. However, for baffle with 4 mm height, the increase in the Nusselt number and friction factor is 68% and 5.57 times, respectively. It is also demonstrated that by increasing Reynolds number, the maximum heat transfer performance has been decreased which is proportional to the increase in p/d and h/d. Moreover, the maximum heat transfer performance in 2,000 Reynolds number is 1.5 proportional to p/d of 0.61 and h/d of 0.36, while for 10,000 Reynolds number, its value is 1.19 in high p/d of 0.93 and h/d of 0.15. The approaches of the present study can be used for optimizing heat transfer performance where geometrical dimensions are not accessible or the rectangular baffle has been applied for heat transfer enhancement.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Author(s):  
Jian Yang ◽  
Min Zeng ◽  
Qiuwang Wang

Pin fin heat exchanges are often used in cooling of high thermal loaded electronic components due to their excellent heat transfer performance. However, the pressure drop in such heat exchanges is usually much higher than that in others, so their overall heat transfer performance is seriously reduced. In order to reduce the pressure drop and improve the overall heat transfer performance for pin fin heat exchangers, porous metal pin arrays are used and the performance of fluid flow and heat transfer in heat exchanger unit cells are numerically studied. The Forchheimer-Brinkman extended Darcy model and two-equation heat transfer model for porous media are employed and the effects of Reynolds number (Re), permeability (K) and pin fin cross-section forms are studied in detail. The results show that, with proper selection of governing parameters, the overall heat transfer performance of porous pin fin heat exchanger is much better than that of traditional solid pin fin heat exchanger; the overall heat transfer performance of long elliptic porous pin fin heat exchanger is the best, that is, the heat transfer per unit pressure drop of such heat exchanger is the highest and the maximum value of the heat transfer over pressure drop is obtained at K = 2×10−7 m2.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3601-3612
Author(s):  
Dan Zheng ◽  
Jin Wang ◽  
Yu Pang ◽  
Zhanxiu Chen ◽  
Bengt Sunden

Experimental research was conducted to reveal the effects of nanofluids on heat transfer performance in a double-tube heat exchanger. With nanoparticle weight fraction of 0.5-2.0% and Reynolds number of 4500-14500, the flow resistance and heat transfer were analyzed by using six nanofluids, i.e., CuO-water, Al2O3-water, Fe3O4-water, ZnO-water, SiC-water, SiO2-water nanofluids. Results show that SiC-water nanofluid with a weight concentration of 1.5% provides the best improvement of heat transfer performance. 1.0% CuO-water and 0.5% SiO2-water nanofluids have lower friction factors in the range of Reynolds number from 4500-14500 compared to the other nanofluids. Based on test results of heat transfer performance and flow resistance, the 1.0% CuO-water nanofluid shows a great advantage due to a relatively high heat transfer performance and a low friction factor. Finally, empirical formulae of Nusselt numbers for various nanofluids were established based on experimental data tested in the double-tube heat exchanger.


Author(s):  
Sun-Joon Byun ◽  
Sang-Jae Lee ◽  
Jae-Min Cha ◽  
Zhen-Huan Wang ◽  
Young-Chul Kwon

This study presents the comparison of heat transfer capacity and pressure drop characteristics between a basic fin-tube heat exchanger and a modified heat exchanger with the structural change of branch tubes and coiled turbulators. All experiments were carried out using an air-enthalpy type calorimeter based on the method described in ASHRAE standards, under heat exchanger experimental conditions. 14 different kinds of heat exchangers were used for the experiment. Cooling and heating capacities of the turbulator heat exchanger were excellent, compared to the basic one. As the insertion ratio of the coiled turbulator and the number of row increased, the heat transfer performance increased. However, the capacity per unit area was more effective in 4 rows than 6 rows, and the cooling performance of the 6 row turbulator heat exchanger (100% turbulator insert ratio) was down to about 6% than that of 4 row one. As the water flow rate and the turbulator insertion ratio increased, the pressure drop of the water side increased. This trend was more pronounced in 6 rows. In the cooling condition, the pressure drop on the air side was slightly increased due to the generation of condensed water, but was insignificant under the heating condition. The power consumption of the pump was more affected by the water flow rate than the coiled turbulator. The equivalent hydraulic diameter of a tube by the turbulator was reduced and then the heat transfer performance was improved. Thus, the tube diameter was smaller, the heat flux was better.


Sign in / Sign up

Export Citation Format

Share Document