scholarly journals AgroClimate Crop Season Planning Tool: Reducing the Risk of Extreme Weather Events during Key Stages of Crop Development

EDIS ◽  
2018 ◽  
Vol 2018 (2) ◽  
Author(s):  
Caroline G. Staub ◽  
Daniel Perondi ◽  
Diego Noleto Luz Pequeno ◽  
Patrick Troy ◽  
Michael J. Mulvaney ◽  
...  

This 5-page publication details a new tool available to growers and Extension professionals to manage risks related to climate during seasonal planning stages. The Crop Season Planning tool is a climate-based tool that enables growers to plan planting strategies that will minimize risk to climate extremes based on historical climate data at their location. Written by Caroline G. Staub, Daniel Perondi, Diego Noleto Luz Pequeno, Patrick Troy, Michael J. Mulvaney, Calvin Perry, Brian Hayes, Willingthon Pavan, and Clyde W. Fraisse, and published by the UF/IFAS Department of Agricultural and Biological Engineering, March 2018.  http://edis.ifas.ufl.edu/ae525

2019 ◽  
Vol 156 ◽  
pp. 62-70 ◽  
Author(s):  
Daniel Perondi ◽  
Clyde W. Fraisse ◽  
Caroline G. Staub ◽  
Vinícius A. Cerbaro ◽  
Daniel D. Barreto ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 12-23
Author(s):  
Ayansina Ayanlade ◽  
Stephen M. Ojebisi

Abstract The study examines the seasonality in climate and extreme weather events, and its effect on cattle production in the Guinea Savannah ecological zone of Nigeria. The study uses both quantitative and qualitative approaches. Climate data of 34 years were used to examine the trends in rainfall pattern and climate variability while household survey was used to appraise the herders’ awareness of climate variability/change impacts and adaptation strategies. Cumulative Departure Index (CDI) method was used to assess the extreme weather events while descriptive statistics and multinomial logistic (MNL) regression model were used to identify the factors that determined herders’ adaptation strategies to climate change. The results revealed a significant spatiotemporal variation in both rainfall and temperature with CDI ranging from -1.39 to 3.3 and -2.3 to 1.81 respectively. The results revealed a reduction in the amount of water available for cattle production. From survey results, 97.5% of the herders identified drought as the major extreme weather event affecting livestock productivities in the study region. In the herder’s perception, the droughts are more severe in recent years than 34 years ago. The results from MNL revealed that extreme weather events, such as drought, has a positive likelihood on migration, at a 10% level of significance, the events has led to migration of cattle herders from the northern part of the study area toward the southern part in recent years.


2020 ◽  
Author(s):  
Valerie Trouet ◽  
Matthew Meko ◽  
Lara Klippel ◽  
Flurin Babst ◽  
Jan Esper ◽  
...  

<p><strong>A recent increase in mid-latitude extreme weather events has been linked to anomalies in the position, strength, and waviness of the Northern Hemisphere polar jet stream. The latitudinal position of the North Atlantic Jet (NAJ) in particular drives climatic extremes over Europe, </strong>by controlling the location of the Atlantic storm track and by influencing the occurrence and duration of atmospheric blocking. <strong>To put recent NAJ trends in a historical perspective and to investigate non-linear relationships between jet stream position, mid-latitude extreme weather events, and anthropogenic climate change, long-term records of NAJ variability are needed. Here, we combine two tree-ring based summer temperature reconstructions from Scotland and from the Balkan Peninsula to reconstruct inter-annual variability in the latitudinal position of the summer NAJ back to 1200 CE. We find that over the past centuries, a northward summer NAJ position has resulted in heatwaves in northwestern Europe, whereas a southward position has promoted wildfires in southeastern Europe and floods in northwestern Europe. The great famine of 1315-1317 in northwestern Europe, for instance, was associated with prolonged flooding and cold summers that resulted in failed grain harvest and were related to a southern NAJ position. We further find an unprecedented increase in NAJ anomalies since the 1960s, which supports more sinuous jet stream patterns and quasi-resonant amplification as potential dynamic pathways for Arctic warming to influence midlatitude weather.</strong></p>


2007 ◽  
Vol 31 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Neville Nicholls ◽  
Lisa Alexander

In 1990 and 1992 the Intergovernmental Panel on Climate Change (IPCC), in its first assessment of climate change and its supplement, did not consider whether extreme weather events had increased in frequency and/or intensity globally, because data were too sparse to make this a worthwhile exercise. In 1995 the IPCC, in its second assessment, did examine this question, but concluded that data and analyses of changes in extreme events were ‘not comprehensive’and thus the question could not be answered with any confidence. Since then, concerted multinational efforts have been undertaken to collate, quality control, and analyse data on weather and climate extremes. A comprehensive examination of the question of whether extreme events have changed in frequency or intensity is now more feasible than it was 15 years ago. The processes that have led to this position are described, along with current understanding of possible changes in some extreme weather and climate events.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Satbyeol Shin ◽  
Young Gu Her ◽  
Geraldina Zhang ◽  
William Lusher

This 8-page document gives an overview of Florida temperature and rainfall during the past 20 years based on historical FAWN data to provide information about the temporal and spatial trends of Florida weather and the frequency and size of extreme weather events such as heavy rainfall and drought. This document also investigates the characteristics of drought and heavy rainfall in relation to hurricanes and tropical storms. Written by Satbyeol Shin, Young Gu Her, Geraldina Zhang, and William Lusher, and published by the UF/IFAS Department of Agricultural and Biological Engineering, January 2020.https://edis.ifas.ufl.edu/ae537


2021 ◽  
Vol 2 (2) ◽  
pp. 164-171
Author(s):  
Mónika Lakatos ◽  
Zita Bihari ◽  
Beatrix Izsák ◽  
Olivér Szentes

Összefoglaló. A WMO 2021 elején kiadott állapotértékelője szerint a COVID–19 miatti korlátozások ellenére az üvegházhatású gázok légköri koncentrációja tovább emelkedett. A tengerszint emelkedés a közelmúltban gyorsult, rekordmagas volt a jégvesztés Grönlandon, az Antarktisz olvadása is gyorsulni látszik. Szélsőséges időjárás pusztított, élelmiszer-ellátási gondok léptek fel, és 2020-ban a COVID–19 hatásával együtt nőtt a biztonsági kockázat több régióban is. Az éghajlatváltozás felerősíti a meglévő kockázatokat, és újabb kockázatok is fellépnek majd a természeti és az ember által alkotott rendszerekben. Az éghajlatváltozás hatása a hazai mérési sorokban is megjelenik. Az Országos Meteorológiai Szolgálat (OMSZ) homogenizált, ellenőrzött mérései szerint 1901 óta 1,2 °C-ot nőtt az évi középhőmérséklet. Két normál időszakot vizsgálva egyértelmű a magasabb hőmérsékletek felé tolódás, a csapadék éven belüli eloszlása megváltozott, az őszi másodmaximum eltűnőben van. Nőtt az aszályhajlam, gyakoribbá váltak a hőhullámok, intenzívebb a csapadékhullás, emiatt az éghajlatvédelemi intézkedések mellett a jól megalapozott alkalmazkodás is indokolt. A biztonsági kockázatok csökkenthetők az OMSZ és Országos Katasztrófavédelmi Főigazgatóság közötti együttműködés által. Summary. The first part of the article gives an overview of the state of the global climate in 2020 based on the report compiled by the World Meteorological Organization (WMO, 2021) and network of partners from UN. According to this report, the 2020 was one of the three warmest years on record, despite a cooling La Niña event. The global mean temperature for 2020 (January to October) was 1.2 ± 0.1 °C above the 1850–1900 baseline, used as an approximation of pre-industrial levels. The latest six years have been the warmest on record. 2011-2020 was the warmest decade on record. The report on the “State of the Global Climate 2020” illustrates the state of the key indicators of the climate system, including greenhouse gas concentrations, increasing land and ocean temperatures, sea level rise, melting ice and glacier and extreme weather. It also highlights impacts on socio-economic development, migration and displacement and food security. All key climate indicators and associated impact information published in this report highlight continuing climate change, an increasing occurrence and intensification of extreme events, and severe losses and damage, affecting people, societies and economies. Extreme weather events triggered an estimated 10 000 000 displacements in 2020. Because of COVID-19 lockdowns, response and recovery operations were leading to delays in providing assistance. After decades of decline, the increase in food insecurity since 2014 is being driven by conflict and economic slowdown as well as climate variability and extreme weather events. Climate change will amplify existing risks and create new risks for natural and human systems. Risks are unevenly distributed and are generally greater for disadvantaged people and communities in countries at all levels of development. The global changes have local effects in Hungary as it is shown in the second part of the article. The climate monitoring at the Hungarian Meteorological Service is based on measurements stored in the Climate data archive. We apply data management tools to produce high quality and representative datasets to prepare climate studies. The data homogenization makes possible to eliminate inhomogeneities due to change in the measuring practice and station movements. Applying spatial interpolation procedure for meteorological data provide the spatial representativeness of the climate data used for monitoring. The surface temperature increase is slightly higher in Hungary than the global change from 1901. The annual precipitation decreased by 3% from 1901, although this change is not significant statistically. The monthly temperatures shifted to warmer monthly averages in the most recent normal period between 1991 and 2020 comparing to the 1961–1990 in each months. The annual course of the monthly precipitations changed, especially autumn. The monthly sum in September and in October increased substantially. The frequency of heatwave days increased by more than two weeks in the Little Plain and in the southern part of the Great Hungarian Plain from 1981, which is the most intense warming period globally. The intensification of the precipitation in the recent years is obvious in our region. The cooperation of the Disaster Risk Management and the Hungarian Meteorological Service could expand the adaptive capacity of the society to climate change.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 155-168
Author(s):  
A. K. SIKKA ◽  
B. BAPUJI RAO ◽  
V. U. M. RAO

Natural disasters of hydro-meteorological nature are playing a key role in the economic development of India. Agricultural production in India is largely dependent on the performance of summer monsoon rainfall. Apart from its spatial and temporal variability, several climatic anomalies / extremes attaining disastrous form at times were found to influence the country's agricultural production. Nature and magnitude of climate extremes that frequent India are presented with their history and region of occurrence.  Droughts and floods are found to be paramount. Of late, hailstorms, cold and heat wave conditions are also exerting considerable influence on field and orchard crops. Trends in extreme events, their frequency and effects on crops are discussed. Regions in the country prone to be sensitive to the various weather extremes are presented. Management strategies and contingency planning to be adopted to cope-up the weather extremes are elucidated. Few case studies on the successful strategies adopted at the field level to cope-up extreme weather events under National Initiative on Climate Resilient Agriculture (NICRA) program are reported.


Sign in / Sign up

Export Citation Format

Share Document