scholarly journals Climate change impacts on cattle production: analysis of cattle herders’ climate variability/change adaptation strategies in Nigeria

2019 ◽  
Vol 5 (1) ◽  
pp. 12-23
Author(s):  
Ayansina Ayanlade ◽  
Stephen M. Ojebisi

Abstract The study examines the seasonality in climate and extreme weather events, and its effect on cattle production in the Guinea Savannah ecological zone of Nigeria. The study uses both quantitative and qualitative approaches. Climate data of 34 years were used to examine the trends in rainfall pattern and climate variability while household survey was used to appraise the herders’ awareness of climate variability/change impacts and adaptation strategies. Cumulative Departure Index (CDI) method was used to assess the extreme weather events while descriptive statistics and multinomial logistic (MNL) regression model were used to identify the factors that determined herders’ adaptation strategies to climate change. The results revealed a significant spatiotemporal variation in both rainfall and temperature with CDI ranging from -1.39 to 3.3 and -2.3 to 1.81 respectively. The results revealed a reduction in the amount of water available for cattle production. From survey results, 97.5% of the herders identified drought as the major extreme weather event affecting livestock productivities in the study region. In the herder’s perception, the droughts are more severe in recent years than 34 years ago. The results from MNL revealed that extreme weather events, such as drought, has a positive likelihood on migration, at a 10% level of significance, the events has led to migration of cattle herders from the northern part of the study area toward the southern part in recent years.

Water ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 229 ◽  
Author(s):  
Karl Havens ◽  
Hans Paerl ◽  
Edward Phlips ◽  
Mengyuan Zhu ◽  
John Beaver ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 493 ◽  
Author(s):  
Hanna-Andrea Rother ◽  
Ruth A. Etzel ◽  
Mary Shelton ◽  
Jerome A. Paulson ◽  
R. Anna Hayward ◽  
...  

Sub-Saharan Africa (SSA) has been identified by the Intergovernmental Panel on Climate Change (IPCC) as being the most vulnerable region to climate change impacts. A major concern is the increase in extreme weather events (EWE) such as storms, floods, droughts, heatwaves, wildfires, and landslides in SSA and their potential to affect the health and well-being of children and adolescents. The objective of this systematic review is to examine the direct and indirect impacts of EWE on the mental health of children and adolescents living in SSA, in order to inform protective adaptation strategies and promote resilience. A meta-analysis will not be possible, since the assumption is that limited studies have been published on the EWE-associated mental health impacts on children and adolescents living in SSA and that those studies that are available are heterogenous. There is acknowledgement in the global literature of the need to highlight child and adolescent mental health more prominently in climate change health strategies and policies. It is vital that adaptation strategies are informed by research on risk prevention and promotion of resilience to ensure the mental health of children and adolescents is protected.


2021 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
James Kimani

Purpose: Climate change can disrupt food availability, reduce access to food, and affect food quality.  Projected increases in temperatures, changes in precipitation patterns, changes in extreme weather events, and reductions in water availability may all result in reduced agricultural productivity. Increases in the frequency and severity extreme weather events can also interrupt food delivery, and resulting spikes in food prices after extreme events are expected to be more frequent in the future.  Increasing temperatures can contribute to spoilage and contamination. The general objective of the study was to establish the effect of Adaptation practices to climate change and its impact on agricultural production by farming household.    Methodology: The paper used a desk study review methodology where relevant empirical literature was reviewed to identify main themes and to extract knowledge gaps. Findings: The study found out the locals households prefer multiple adaptation strategies to counter the effects of climate variability and change. The current local adaptation strategies include crop, diversification, shifting planting dates, off farm jobs and diversifying from farm to non – farm activities. However majority of the respondents employ crop diversification as the main adaptation strategy. For the locals’ crop diversification does, to an extent, guarantees good harvests although there are years in which farmers report total crop losses Recommendations: The study recommends that policy efforts should be directed at enforcing  adaptation measures of climate change in order to boost agricultural  production


2019 ◽  
Vol 10 (03) ◽  
pp. 1950012 ◽  
Author(s):  
KHADIYA AKTAR MAYA ◽  
MD. ABDUR RASHID SARKER ◽  
JEFF GOW

Introduction: Climate change has emerged as a major threat to Bangladesh. Higher and fluctuating temperatures and changes in rainfall caused by climate change and extreme weather events have reduced crop production. A better understanding of the local dimensions of vulnerability is therefore essential to develop appropriate adaptation measures that can alleviate these adverse impacts. Purpose and methods: The main purpose of this study was to identify the determinants of Aman rice farmers’ choice of adaptation strategies to climate change and weather in Khulna district, Bangladesh. About 100 farm households susceptible to salinity intrusion, extreme temperatures and drought were surveyed, and these data were supplemented by major climate data of the district for 65 years (1948–2013). A binary logistic regression was then utilized to estimate the factors that influence households’ choice of adaptation strategies. Results and Conclusions: About 97% of farmers perceived that the climate had changed over the past 30 years while only 3% did not. Further, 97% believed that rainfall had decreased and reduced rice production, yet the data show this not to be the case with a significant increase in rainfall observed in the area in the study period. About 89% of farmers have undertaken some form(s) of adaptation and they were further asked about their main adaptation type. Family size, annual income, farmer-to-farmer extension and access to subsidies have a positive and significant impact on rice farmers’ adaptation strategies to climate and weather change effects. Farm size and credit access had a negative and significant impact on adaptation. Four variables: age, education, household assets and occupation were not statistically significant in explaining adaption strategies. The chief adaptation strategies of farmers are cultivation of salinity-tolerant rice, rice variety switching, replanting of rice, changing planting dates, conversion of rice paddy to fish production and use of different crop varieties in alternate years.


Author(s):  
Ramona A. Duchenne-Moutien ◽  
Hudaa Neetoo

Throughout these past decades, climate change has featured among one of the most complex global issues. Characterized by worldwide alterations in weather patterns, along with a concomitant increase in the temperature of the Earth, climate change will undoubtedly have significant effects on food security and food safety. Climate change engenders climate variability, which are significant variations in weather variables and in their frequency. Both climate variability and climate change are thought to threaten the safety of the food supply chain through different pathways. One such pathway is their ability to exacerbate foodborne diseases by influencing the occurrence, persistence, virulence and, in some cases, toxicity of certain groups of disease-causing microorganisms. Food safety can also be compromised by various chemical hazards such as pesticides, mycotoxins and heavy metals. With changes in weather patterns such as lower rainfall, higher air temperature and higher frequency of extreme weather events amongst others, this translates to emerging food safety concerns. These include shortage of safe water for irrigation of agricultural produce, greater use of pesticides due to pest resistance, increased difficulty in achieving a well-controlled cold chain resulting in temperature abuse, or occurrence of flash floods which cause run-off of chemical contaminants in natural water courses. Together, these can result in foodborne infection, intoxication, antimicrobial resistance and long-term bioaccumulation of chemicals and heavy metals in the human body. Furthermore, severe climate variability can result in extreme weather events and natural calamities, which directly or indirectly impair food safety. This review discusses the causes and impacts of climate change and variability on existing as well as emerging food safety risks, and also considers mitigation and adaptation strategies to address the global warming and climate change problem.


2021 ◽  
Vol 2 (2) ◽  
pp. 164-171
Author(s):  
Mónika Lakatos ◽  
Zita Bihari ◽  
Beatrix Izsák ◽  
Olivér Szentes

Összefoglaló. A WMO 2021 elején kiadott állapotértékelője szerint a COVID–19 miatti korlátozások ellenére az üvegházhatású gázok légköri koncentrációja tovább emelkedett. A tengerszint emelkedés a közelmúltban gyorsult, rekordmagas volt a jégvesztés Grönlandon, az Antarktisz olvadása is gyorsulni látszik. Szélsőséges időjárás pusztított, élelmiszer-ellátási gondok léptek fel, és 2020-ban a COVID–19 hatásával együtt nőtt a biztonsági kockázat több régióban is. Az éghajlatváltozás felerősíti a meglévő kockázatokat, és újabb kockázatok is fellépnek majd a természeti és az ember által alkotott rendszerekben. Az éghajlatváltozás hatása a hazai mérési sorokban is megjelenik. Az Országos Meteorológiai Szolgálat (OMSZ) homogenizált, ellenőrzött mérései szerint 1901 óta 1,2 °C-ot nőtt az évi középhőmérséklet. Két normál időszakot vizsgálva egyértelmű a magasabb hőmérsékletek felé tolódás, a csapadék éven belüli eloszlása megváltozott, az őszi másodmaximum eltűnőben van. Nőtt az aszályhajlam, gyakoribbá váltak a hőhullámok, intenzívebb a csapadékhullás, emiatt az éghajlatvédelemi intézkedések mellett a jól megalapozott alkalmazkodás is indokolt. A biztonsági kockázatok csökkenthetők az OMSZ és Országos Katasztrófavédelmi Főigazgatóság közötti együttműködés által. Summary. The first part of the article gives an overview of the state of the global climate in 2020 based on the report compiled by the World Meteorological Organization (WMO, 2021) and network of partners from UN. According to this report, the 2020 was one of the three warmest years on record, despite a cooling La Niña event. The global mean temperature for 2020 (January to October) was 1.2 ± 0.1 °C above the 1850–1900 baseline, used as an approximation of pre-industrial levels. The latest six years have been the warmest on record. 2011-2020 was the warmest decade on record. The report on the “State of the Global Climate 2020” illustrates the state of the key indicators of the climate system, including greenhouse gas concentrations, increasing land and ocean temperatures, sea level rise, melting ice and glacier and extreme weather. It also highlights impacts on socio-economic development, migration and displacement and food security. All key climate indicators and associated impact information published in this report highlight continuing climate change, an increasing occurrence and intensification of extreme events, and severe losses and damage, affecting people, societies and economies. Extreme weather events triggered an estimated 10 000 000 displacements in 2020. Because of COVID-19 lockdowns, response and recovery operations were leading to delays in providing assistance. After decades of decline, the increase in food insecurity since 2014 is being driven by conflict and economic slowdown as well as climate variability and extreme weather events. Climate change will amplify existing risks and create new risks for natural and human systems. Risks are unevenly distributed and are generally greater for disadvantaged people and communities in countries at all levels of development. The global changes have local effects in Hungary as it is shown in the second part of the article. The climate monitoring at the Hungarian Meteorological Service is based on measurements stored in the Climate data archive. We apply data management tools to produce high quality and representative datasets to prepare climate studies. The data homogenization makes possible to eliminate inhomogeneities due to change in the measuring practice and station movements. Applying spatial interpolation procedure for meteorological data provide the spatial representativeness of the climate data used for monitoring. The surface temperature increase is slightly higher in Hungary than the global change from 1901. The annual precipitation decreased by 3% from 1901, although this change is not significant statistically. The monthly temperatures shifted to warmer monthly averages in the most recent normal period between 1991 and 2020 comparing to the 1961–1990 in each months. The annual course of the monthly precipitations changed, especially autumn. The monthly sum in September and in October increased substantially. The frequency of heatwave days increased by more than two weeks in the Little Plain and in the southern part of the Great Hungarian Plain from 1981, which is the most intense warming period globally. The intensification of the precipitation in the recent years is obvious in our region. The cooperation of the Disaster Risk Management and the Hungarian Meteorological Service could expand the adaptive capacity of the society to climate change.


2020 ◽  
Vol 12 (3) ◽  
pp. 435-452 ◽  
Author(s):  
Nadine Fleischhut ◽  
Stefan M. Herzog ◽  
Ralph Hertwig

AbstractAs climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.


Sign in / Sign up

Export Citation Format

Share Document