scholarly journals A General Two-stage Multi-label Ranking Framework

Author(s):  
Yanbing Xue ◽  
Milos Hauskrecht

In this paper we develop and study solutions for the multi-label ranking (MLR) problem. Briefly, the goal of multi-label ranking is not only to assign a set of relevant labels to a data instance but also to rank the labels according to their importance. To do so we propose a two-stage model that consists of: (1) a multi-label classification model that first selects an unordered set of labels for a data instance, and, (2) a label ordering model that orders the selected labels post-hoc in order of their importance. The advantage of such a model is that it can represent both the dependencies among labels, as well as, their importance. We evaluate the performance of our framework on both simulated and real-world datasets and show its improved performance compared to the existing multiple-label ranking solutions.

2020 ◽  
Vol 34 (01) ◽  
pp. 173-180
Author(s):  
Zhen Pan ◽  
Zhenya Huang ◽  
Defu Lian ◽  
Enhong Chen

Many events occur in real-world and social networks. Events are related to the past and there are patterns in the evolution of event sequences. Understanding the patterns can help us better predict the type and arriving time of the next event. In the literature, both feature-based approaches and generative approaches are utilized to model the event sequence. Feature-based approaches extract a variety of features, and train a regression or classification model to make a prediction. Yet, their performance is dependent on the experience-based feature exaction. Generative approaches usually assume the evolution of events follow a stochastic point process (e.g., Poisson process or its complexer variants). However, the true distribution of events is never known and the performance depends on the design of stochastic process in practice. To solve the above challenges, in this paper, we present a novel probabilistic generative model for event sequences. The model is termed Variational Event Point Process (VEPP). Our model introduces variational auto-encoder to event sequence modeling that can better use the latent information and capture the distribution over inter-arrival time and types of event sequences. Experiments on real-world datasets prove effectiveness of our proposed model.


Author(s):  
Lu Cheng ◽  
Jundong Li ◽  
Yasin Silva ◽  
Deborah Hall ◽  
Huan Liu

Cyberbullying has become one of the most pressing online risks for adolescents and has raised serious concerns in society. Recent years have witnessed a surge in research aimed at developing principled learning models to detect cyberbullying behaviors. These efforts have primarily focused on building a single generic classification model to differentiate bullying content from normal (non-bullying) content among all users. These models treat users equally and overlook idiosyncratic information about users that might facilitate the accurate detection of cyberbullying. In this paper, we propose a personalized cyberbullying detection framework, PI-Bully, that draws on empirical findings from psychology highlighting unique characteristics of victims and bullies and peer influence from like-minded users as predictors of cyberbullying behaviors. Our framework is novel in its ability to model peer influence in a collaborative environment and tailor cyberbullying prediction for each individual user. Extensive experimental evaluations on real-world datasets corroborate the effectiveness of the proposed framework.


1997 ◽  
Author(s):  
Saul Sternberg ◽  
Teresa Pantzer
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yaroslava E. Poroshyna ◽  
Aleksander I. Lopato ◽  
Pavel S. Utkin

Abstract The paper contributes to the clarification of the mechanism of one-dimensional pulsating detonation wave propagation for the transition regime with two-scale pulsations. For this purpose, a novel numerical algorithm has been developed for the numerical investigation of the gaseous pulsating detonation wave using the two-stage model of kinetics of chemical reactions in the shock-attached frame. The influence of grid resolution, approximation order and the type of rear boundary conditions on the solution has been studied for four main regimes of detonation wave propagation for this model. Comparison of dynamics of pulsations with results of other authors has been carried out.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-17
Author(s):  
Wu Chen ◽  
Yong Yu ◽  
Keke Gai ◽  
Jiamou Liu ◽  
Kim-Kwang Raymond Choo

In existing ensemble learning algorithms (e.g., random forest), each base learner’s model needs the entire dataset for sampling and training. However, this may not be practical in many real-world applications, and it incurs additional computational costs. To achieve better efficiency, we propose a decentralized framework: Multi-Agent Ensemble. The framework leverages edge computing to facilitate ensemble learning techniques by focusing on the balancing of access restrictions (small sub-dataset) and accuracy enhancement. Specifically, network edge nodes (learners) are utilized to model classifications and predictions in our framework. Data is then distributed to multiple base learners who exchange data via an interaction mechanism to achieve improved prediction. The proposed approach relies on a training model rather than conventional centralized learning. Findings from the experimental evaluations using 20 real-world datasets suggest that Multi-Agent Ensemble outperforms other ensemble approaches in terms of accuracy even though the base learners require fewer samples (i.e., significant reduction in computation costs).


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document