scholarly journals Efek Penambahan Fe3Mn7 Terhadap Sifat Fisis dan Mekanik α-Fe2O3

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Eko Arief Setiadi

Abstrak: Preparasi dan karakterisasi pellet α-Fe2O3 dengan penambahan 0, 2, 5 dan 10 %wt. Fe3Mn7 berbasis pada materialalam telah berhasil dilakukan. Proses pencampuran serbuk α-Fe2O3 dan Fe3Mn7 dilakukan dengan menggunakan HEM. ºKemudian campuran serbuk dikasinasi pada suhu 1000C, dikompaksi pada 69 Pa hingga menjadi pellet dan disinter padasuhu 1000 ºC. Karakterisasi XRD menunjukkan adanya fasa dominan α-Fe2O3 dan fasa baru MnO2 dan Fe3O4. Densitas dankekerasan sampel meningkat secara linier seiring dengan kenaikan komposisi Fe3Mn7 yang ditambahkan. Sampel optimum3diperoleh pada sampel α-Fe2O3/10 %wt. Fe3Mn7 dengan nilai bulk density dan kekerasan masing-masing 4,98 g/cm and994,94 HV. Sampel ini termasuk dalam klasifikasi hard magnet dengan nilai magnetisasi saturasi, remanen dan koersivitasmasing-masing sebesar 24,0 emu/g, 10,3 emu/g dan 571,8 Oe.Kata kunci:. α-Fe2O3, Fe3Mn7, densitas, kekerasan, sifat magnetikAbstract: Preparation and characterization of α-Fe2O3 pellet with the addition of 0, 2, 5 and 10 %wt. Fe3Mn7 based on naturalmaterials have been successfully carried out. The process of mixing powder of α-Fe2O3 and Fe3Mn7 was performed usingºHEM. Then, the mix powders were calcined at temperature of 1000 C. After that, the powders were compacted at 69 Pa intopellet and sintered at temperature of 1000ºC. Characterization of XRD shows that the samples have major phase of α-Fe2O3and new phases of MnO2 and Fe3O4. The density and hardness samples increase linearly with increasing of Fe3Mn73composition. The optimum sample with α-Fe2O3/10 %wt. Fe3Mn7 has bulk density and hardness value of 4.98 g/cm and 994.94HV respectively. This sample is classified as semi-hard magnet with magnetization saturation, remanence and coercivity valueof 24.0 emu/g, 10.3 emu/g dan 571.8 Oe respectively.Keywords: α-Fe2O3, Fe3Mn7, density, hardness, magnetic properties

2017 ◽  
Vol 1 (1) ◽  
pp. 49
Author(s):  
Dwi Puryanti ◽  
Dori Andani ◽  
Merry Thressia

<p class="Abstract">Synthesis of Fe<sub>3</sub>O<sub>4</sub> particles was performed using coprecipitation method. Iron sand base material obtained by processing the iron rocks by means of destruction and extraction. Iron rocks were taken from the village Surian, South Solok of West Sumatera. Iron sand that has been extracted reacted with HCL and NH<sub>4</sub>OH. Furthermore, the PEG-2000 were added to see its effect on the resulting magnetization saturation. Variations in the composition ratio of iron sand and PEG-2000 are 1:0, 1:1, 1:2 and 1:4. The crystal structure of the sample was confirm using x-ray diffraction method. Characterization of magnetic properties carried out using vibrating Sample Magnetometer (VSM). The results of magnetic properties show that the saturation magnetization decreases with increasing of PEG-2000 content in the range of 99.50emu/g - 0,84 emu/g.</p>


2020 ◽  
Vol 855 ◽  
pp. 34-39
Author(s):  
Suprapedi ◽  
Muljadi ◽  
Priyo Sardjono ◽  
Ramlan Ramlan

A bonded permanent magnet of Barium hexa Ferrite has been made using powder BaFe12O19 (commercial ferrite) and a polymer of bakelite powder as binder. The composition of bakelite was varried 5% wt. The preparation of sample was begun with mass weighing for each material, then mixed together using ball mill for 1, 6 and 12 hours and using aquades as milling media. The mixed powder is dried in an oven at 110 °C for 4 hours, then the particle size distribution was measured. After that, the dried sample powder was pressed to form a pellet at pressure 40 MPa and temperature about 160 °C for 20 minutes. The characterization of sample pellet was done such as measurement of bulk density, hardness , magnetic properties using VSM and anylisis of microstructure using SEM. The results of the characterization show that the density and magnetic properties tend to increase with increasing of milling time, where the highest density, hardness and highest magnetic properties are achieved at sample with milling time for 12 hours. The value of magnetic properties at this condition are flux magnetic of 530 Gauss, remenance of 3100 Gauss, coercivity of 1,10 kOe.


2017 ◽  
Vol 1 (1) ◽  
pp. 49
Author(s):  
Dwi Puryanti ◽  
Dori Andani ◽  
Merry Thressia

<p class="Abstract">Synthesis of Fe<sub>3</sub>O<sub>4</sub> particles was performed using coprecipitation method. Iron sand base material obtained by processing the iron rocks by means of destruction and extraction. Iron rocks were taken from the village Surian, South Solok of West Sumatera. Iron sand that has been extracted reacted with HCL and NH<sub>4</sub>OH. Furthermore, the PEG-2000 were added to see its effect on the resulting magnetization saturation. Variations in the composition ratio of iron sand and PEG-2000 are 1:0, 1:1, 1:2 and 1:4. The crystal structure of the sample was confirm using x-ray diffraction method. Characterization of magnetic properties carried out using vibrating Sample Magnetometer (VSM). The results of magnetic properties show that the saturation magnetization decreases with increasing of PEG-2000 content in the range of 99.50emu/g - 0,84 emu/g.</p>


2016 ◽  
Vol 864 ◽  
pp. 65-69 ◽  
Author(s):  
Muljadi ◽  
Priyo Sardjono ◽  
Nenen Rusnaeni Djauhari ◽  
Suprapedi ◽  
Ramlan

Hybrid bonded magnet Ba-Ferrite/NdFeB with 5% wt Epoxy Resin (ER) as polymer binder hsa been developed with variations in BaFe12O19 to NdFeB weight ratio. The variation of the BaO6Fe2O3 : Nd-Fe-B weight ratio are 90%:10%; 80%:20%; 70%:30% and 60%:40%. The magnetic particle consist of Ba-Ferrite and NdFeB were mixed until homogenize and compacted by using hydraulic press machine with 8 Tonf force to form a disc shape sample. The disc sample was dried using vacuum dryer with 10 mm bar pressure at 80°C for one hour before being magnetized using impulse magnetizer. The best %wt composition ratio of Ba-Ferrite/NdFeB is 70%/30% and 60%/40%. The hybrid bonded magnetic properties at the best %wt composition ratio are: bulk density = 4.28-4.43 g/cm3, FM = 1057-1121 Gauss, Br = 3.46-3.70 kG, Hc = 3.25-3.70 kOe, and BHmax = 1.60-1.70 MGOe.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


2013 ◽  
Vol 845 ◽  
pp. 256-260 ◽  
Author(s):  
M. Abubakar ◽  
A.B. Aliyu ◽  
Norhayati Ahmad

Porous ceramics were produced by compaction method of Nigerian clay and cassava starch. The samples were prepared by adding an amount from 5 to 30%wt of cassava starch into the clay and sintered at temperature of 900-1300°C. The influence of cassava starch content on the bulk density and apparent porosity was studied. The result of XRD and DTA/TGA shows that the optimum sintering temperature was found to be 1300°C. The percentage porosity increased from 12.87 to 43.95% while bulk density decreased from 2.16 to 1.46g/cm3 with the increase of cassava starch from 5 to 30%wt. The effect of sintering temperature and cassava starch content improved the microstructure in terms of porosity and the thermal properties of porous clay for various applications which requires a specific porosity.


2009 ◽  
Vol 113 (39) ◽  
pp. 16934-16938 ◽  
Author(s):  
S. Y. Liu ◽  
A. K. Soh ◽  
L. Hong ◽  
L. Lu

Sign in / Sign up

Export Citation Format

Share Document