scholarly journals Effect of temperature and porosities on dynamic response of functionally graded beams carrying a moving load

2017 ◽  
Vol 20 (K2) ◽  
pp. 24-33
Author(s):  
Tuyen Van Bui

The effect of temperature and porosities on the dynamic response of functionally graded beams carrying a moving load is investigated. Uniform and nonlinear temperature distributions in the beam thickness are considered. The material properties are assumed to be temperature dependent and they are graded in the thickness direction by a power-law distribution. A modified rule of mixture, taking the porosities into consideration, is adopted to evaluate the effective material properties. Based on Euler-Bernoulli beam theory, equations of motion are derived and they are solved by a finite element formulation in combination with the Newmark method. Numerical results show that the dynamic amplification factor increases by the increase of the temperature rise and the porosity volume fraction. The increase of the dynamic amplification factor by the temperature rise is more significant by the uniform temperature rise and for the beam associated with a higher grading index.

2018 ◽  
Vol 106 (2) ◽  
pp. 206
Author(s):  
Abdennacer Chemami ◽  
Youcef Khadri ◽  
Sabiha Tekili ◽  
El Mostafa Daya ◽  
Ali Daouadji ◽  
...  

This paper presents a numerical study of the free and damped forced vibration of simply-supported beams with composite coats subjected to a moving load by use of finite elements method. Three types of beam configurations, aluminum, composite and strengthened beam are investigated. The equation of motion of the beam is solved using the modal superposition method and integrated by applying the Newmark time integration procedure. Good agreements were achieved between the FEM and analytical solutions. The damped dynamic response, critical velocities and the dynamic amplification factor of the beam are calculated for different parameters such as the thickness ratio, the fiber orientation of the coat and damping ratio.


2010 ◽  
Vol 168-170 ◽  
pp. 1090-1097
Author(s):  
Shi Guo Xiao ◽  
Wen Kai Feng

Near-field seismic motion characteristics are analyzed in accordance with records of the 2008 Ms8.0 Wenchuan Earthquake measured at Wolong Station, upon which the determination of seismic load is introduced. Dynamic response features, such as acceleration, displacement and stress, of high steep rock slopes on the banks of Zipingpu Reservoir at a variety of locations resulting from horizontal seismic force are analyzed with a numerical analysis routine. The dynamic amplification factor on the slope top is determined, leading to a characterization of the mode of failure of the high steep slope. Analyses show that the dynamic amplification factor at the top of the slopes is about 1.34; however, dynamic response deformation features and stress state at different positions on the slope vary. Earthquake damage of the high steep rock slopes consists mainly of partial avalanche of the rock mass at the top of the slopes by joint cutting. Field investigations after the earthquake have partially confirmed the numerical analysis results presented in this paper.


Author(s):  
Micaela Pilotto ◽  
Beverley F. Ronalds

This paper describes the dynamic response of minimum facilities with different structural configurations which are subjected to random seas. The finite element models are kept simple with the aim of focusing on the physics of the phenomena involved. The response is studied in terms of the dynamic amplification factor (DAF), representing the ratio between the dynamic and the static response. Two different formulations of the DAF under random seas are compared. The first is defined in terms of standard deviation (DAF1), the second in terms of the most probable maximum value (DAF2). Ringing is observed to be a relevant feature of the dynamic response and to affect primarily the braced monopod configurations. Ringing is detected using DAF2. The paper also addresses the importance of the kinematic representation above the still water level. Different methods of stretching the velocity field in the wave zone (delta, Wheeler and exponential stretching) are shown to have a significant impact on the dynamic response of the platforms.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Rajendra Kumar Praharaj ◽  
Nabanita Datta ◽  
Mohammed Rabius Sunny

Abstract The dynamic response of fractionally damped viscoelastic plates subjected to a moving point load is investigated. In order to capture the viscoelastic dynamic behavior more accurately, the material is modeled using the fractionally damped Kelvin–Voigt model (rather than the integer-type viscoelastic model). The Riemann–Liouville fractional derivative of order 0 < α ≤ 1 is applied. Galerkin's method and Newton–Raphson technique are used to evaluate the natural frequencies and corresponding damping coefficients. The structure is subject to a moving point load, traveling at different speeds. The modal summation technique is applied to generate the dynamic response of the plate. The influence of the order of the fractional derivative on the free and transient vibrations is studied for different velocities of the moving load. The results are compared with those using the classical integer-type Kelvin–Voigt viscoelastic model. The results show that an increase in the order of the fractional derivative causes a significant decrease in the maximum dynamic amplification factor, especially in the “dynamic zone” of the normalized sweep time. The dynamic behavior of the plate is verified with ansys.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1417 ◽  
Author(s):  
Zsuzsa B. Pap ◽  
László P. Kollár

Since damping in lightweight floors is usually low, dynamic amplification can be rather high. Long rectangular plates subjected to concentrated loads are often investigated by a replacement beam with a so called “effective width”. Although this approach is a reliable tool for static loads, the steady-state dynamic response of beams and long plates subjected to periodic loads are significantly different. The maximum displacements and accelerations of beams (and of not-long rectangular plates) are obtained by using a dynamic amplification factor, which in the case of resonance is equal to 1 / 2 ξ , where ξ is the damping ratio. For long plates (and for not-long orthotropic rib-stiffened plates), as discussed in the paper, the response and the amplification factor are substantially different from those of beams. Hence, design based on effective width may lead to 2–4 times higher acceleration than the real values. In an economic design, to avoid unnecessary damping enhancement, this effect must be taken into account.


Author(s):  
Micaela Pilotto ◽  
Beverley F. Ronalds ◽  
Roman Stocker

This paper describes a systematic desktop study of the non-linear dynamic behavior of monopod platforms. The aim of this work is to highlight some important factors in the dynamics of minimum structures in shallow water. The analysis is performed in the time domain with regular wave loading. The non-linearities are due to the wave theory (Stream function of 8th order), to the shallow water environment and to the drag-dominated situation. Idealizations of two braced monopod configurations are compared with the simpler and more commonly studied unbraced monopod. Aspects highlighted for each configuration include the effect of wave period and top mass on the dynamic amplification factor. In particular, the analysis focuses on the highly non-linear behavior in the wave zone. The results show that braced monopods are dynamically more sensitive than unbraced monopods. In particular, braced monopods exhibit more energy at higher harmonics in the quasi-static response. This yields a consistently stronger dynamic response even if the wave period and the natural period of the structure are very different. The importance of the mass at the top of the structure in the dynamic response and in particular its role in increasing the dynamic amplification factor up the water column are highlighted.


Author(s):  
Bui Thi Thu Hoai ◽  
Nguyen Dinh Kien ◽  
Tran Thi Thu Huong ◽  
Le Thi Ngoc Anh

The large displacements of functionally graded sandwich (FGSW) beams in thermal environment  are studied using a finite element formulation. The beams are composed of three layers, a homogeneous core and two functionally graded face sheets with volume fraction of constituents following a power gradation law. The material properties of the beams are considered to be temperature-dependent.  Based on Antman beam model and the total Lagrange formulation, a two-node nonlinear beam element taking the effect of temperature rise into account  is formulated and employed in the study. The element with explicit expressions for the internal force vector and tangent stiffness matrix is derived using linear interpolations and reduced integration technique to avoid the shear locking. Newton-Raphson based iterative algorithm is employed in combination with the arc-length control method to compute the large displacement response of a cantilever FGSW beam subjected to end forces.  The accuracy of the formulated element is confirmed through a comparison study. The effects of the material inhomogeneity, temperature rise and layer thickness ratio on the large deflection response of the beam are examined and highlighted.


2018 ◽  
Vol 136 ◽  
pp. 1247-1251
Author(s):  
Raúl Muñoz ◽  
Francisco J. Calvo ◽  
Sergio Sádaba ◽  
Ana M. Gil ◽  
Javier Rodríguez ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fei Han ◽  
Dan-hui Dan ◽  
Hu Wang

In order to study the coupled influence of deck pavement roughness and velocity on dynamic amplification factor, a 2-DOF 1/4 vehicle model is employed to establish the vehicle-bridge-coupled vibration system. The random dynamic load of running vehicle simulated by software MATLAB is applied on bridge deck pavement (BDP) through ANSYS software. Besides, the influence of BDP parameters on control stress under static load and random vibration load is analyzed. The results show that if the surface of BDP is smooth, the dynamic magnification coefficient would first increase and then decrease with increasing of vehicle velocity and reach its maximum value when v = 20 m/s; if the surface of BDP is rough, the maximal and minimum values of the dynamic amplification coefficient (DAC) occur, respectively, when the velocity reaches 10 m/s and 15 m/s. For a composite bridge deck with the cushion layer, the thickness of asphalt pavement should be not too thick or thin and better to be controlled for about 10 cm; with the increasing of cushion layer thickness, the control stress of deck pavement is all decreased and show similar change regularity under effect of different loads. In view of self-weight of structure, the thickness of the cushion layer is recommended to be controlled for about 4 cm.


Sign in / Sign up

Export Citation Format

Share Document