scholarly journals Using edge elements for modeling of 3-D magnetodynamic problem via a subproblem method

2020 ◽  
Vol 23 (1) ◽  
pp. 439-445 ◽  
Author(s):  
Vuong Quoc Dang ◽  
Christophe Geuzaine

Introduction: The mathematical modeling of electromagnetic problems in electrical devices are often presented by Maxwell’s equations and constitutive material laws. These equations are partial differential equations linked to fields and their sources. In order to solve these equations and simulate the distribution of magnetic fields and eddy current losses of electromagnetic problems, a subproblem method for modeling a 3-D magnetodymic problem with the b-conformal formulation is proposed. Methods: In this paper, the subproblem method with using edge finite elements is proposed for coupling subproblems via several steps to treat and deal with some troubles regarding to electromagnetic problems that gets quite difficulties when directly applying a finite element method. In the strategy subproblem method, it allows a complete problem to define into several subproblems with adapted dimensions. Each subproblem can be solved on its independent domain and mesh without performing in whole domain or mesh. This easily supports meshing and decreases computing time. Results: The obtained results, the subproblem method with edge elements indicates magnetic flux densities and the eddy current losses in the conducting region. The computed results is also compared with the measured results done by other authors. This can be shown that there is a very good agreement. Conclusion: The validated method has been successfully applied to a practical test problem (TEAM Problem 7).

2014 ◽  
Vol 63 (1) ◽  
pp. 107-114
Author(s):  
Dariusz Koteras

Abstract The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained


2020 ◽  
pp. 54-58
Author(s):  
S. M. Plotnikov

The division of the total core losses in the electrical steel of the magnetic circuit into two components – losses dueto hysteresis and eddy currents – is a serious technical problem, the solution of which will effectively design and construct electrical machines with magnetic circuits having low magnetic losses. In this regard, an important parameter is the exponent α, with which the frequency of magnetization reversal is included in the total losses in steel. Theoretically, this indicator can take values from 1 to 2. Most authors take α equal to 1.3, which corresponds to the special case when the eddy current losses are three times higher than the hysteresis losses. In fact, for modern electrical steels, the opposite is true. To refine the index α, an attempt was made to separate the total core losses on the basis that the hysteresis component is proportional to the first degree of the magnetization reversal frequency, and the eddy current component is proportional to the second degree. In the article, the calculation formulas of these components are obtained, containing the values of the total losses measured in idling experiments at two different frequencies, and the ratio of these frequencies. It is shown that the rational frequency ratio is within 1.2. Presented the graphs and expressions to determine the exponent α depending on the measured no-load losses and the frequency of magnetization reversal.


2021 ◽  
pp. 1-1
Author(s):  
K. Roppert ◽  
S. Schoder ◽  
G. Wallinger ◽  
M. Kaltenbacher
Keyword(s):  

1997 ◽  
Vol 12 (11) ◽  
pp. 3085-3089
Author(s):  
S. Mench ◽  
M. Lelovic ◽  
T. Deis ◽  
N. G. Eror ◽  
U. Balachandran ◽  
...  

The ac magnetic losses at power frequencies (60 Hz) were investigated for mono- and multifilament Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Oy (BSCCO-2223) tapes with similar Ic values at 77 K. The multifilament sample exhibited higher losses than the monofilament under the same conditions. Loss peaks are discussed in terms of intergranular, intragranular, and eddy current losses. Because of BSCCO's anisotropy, field orientation has a large effect on the magnitude of these peaks, even at relatively small angles. Losses for fields applied parallel to the c-axis of the textured BSCCO grains are larger by over an order of magnitude than those applied perpendicular.


2021 ◽  
Author(s):  
Lino Di Leonardo ◽  
Andrea Credo ◽  
Marco Tursini ◽  
Marco Villani

Sign in / Sign up

Export Citation Format

Share Document