scholarly journals Selection of Bacillus spp. isolates having enzyme producing ability and antagonistic to Vibrio parahaemolyticus causing the early mortality syndrome (EMS) on shrimp

Author(s):  
Dung Thi Thanh Do ◽  
Binh Thanh Le ◽  
Duong Thi Dang Hoang ◽  
Quang Dinh Vo ◽  
Trang Thi Phuong Phan

The aim of this study is to select some Bacillus isolates which are capable of yielding several beneficial enzymes and antagonism to Vibrio parahaemolyticus causing the EMS shrimp disease. In this study, we isolated and screened total of 54 Bacillus isolates from 30 mud, water and shrimp samples at shrimp ponds in Soc Trang province. Among these, 19 isolates were resistant against Vibrio parahaemolyticus strains causing the EMS shrimp disease via two testing methods. Three of them including NA2B13, NA10B2, NA8B1 isolates showed strongresistance and strong one to three kinds of extracellular enzymes to produce. Result of 16S rDNA sequencing and MALDI -TOF showed that NA2B13 and NA8B1 were Bacillus subtilis and NA10B2 was B. amyloliquefaciens. These two species were regarded safe and having potential applications in the production of biological products to prevent EMS shrimp disease.

Author(s):  
Dung Thi Thanh Do ◽  
Quang Dinh Vo ◽  
Trang Thi Phuong Phan

Early mortality syndrome (EMS) caused by pathogenic Vibrio parahaemolyticus is one of the most major factors affecting the development of aquaculture. Using the antagonism of probiotics against pathogens is an alternative strategy to antibiotics and has lots of potential to control pathogenic bacteria. In this study, we isolated and screened total of 8 Lactobacillus strains from 30 mud, water and shrimp samples at shrimp ponds in Soc Trang province. All of them were be able resistant with Vibrio parahaemolyticus strains causing the EMS shrimp disease in vitro. In which, TA7L1 strain showed the strongest resistance and was identified as Lactobacillus plantarum by analysing 16S rDNA sequence and MALDI-TOF. TA7L1 strain was determined safety and has potential application in the production of biological products to prevent EMS shrimp disease.


Author(s):  
Guillermo Galindo Reyes

The world shrimp aquaculture, has faced several problems, causing severe losses in shrimp hatcheries; between the most critical has been diseases such as early mortality syndrome (EMS) caused by (Vibrio parahaemolyticus). The EMS was initially detected in Asian countries; after, it was disseminated to Mexico and other countries. In Mexico, EMS caused severe economic losses during 2013-2016; and it has not yet been eradicated. Various causes for EMS have been reported; none is entirely accurate, but water quality is essential for successful shrimp aquaculture; therefore, the aim this work was evaluate the ammonia concentration effect on susceptibility to (EMS) on post-larvae (PL-15) shrimp (Litopenaeus vannamei) infected with (V. parahaemolyticus), using a biofilm system (water with, microalgae, dinoflagellates, protozoa and other planktonic microorganisms). So series of 5 flasks each one were arranged as following: Series S; 900 ml of filtered seawater (FSW) and 10 PL-15 shrimp per flask. Series SB; 840 ml of FSW, 60 ml of biofilm and 10 PL-15 shrimp. Series E; 900 ml of FSW, infected with 2 ml (V. parahaemolyticus) 106 CFU/ ml and 10 PL-15 shrimp. Series EN; fifteen flasks with 900 ml of FSW, 10 PL-15 shrimp, added with NH4Cl (0.535 mg/ml), to get 0.5, 1.0, 1.5, 2.0 and 2.5 mg/l final ammonia concentration in 5 sub-series of 3 flasks each one. During experiment, ammonia concentration and PL-15 shrimp mortality were evaluated in all flask. Ammonia concentration was higher in series EN than in series E; the same was observed in Series S respect to SB, but at lower values. At end of experiment, mortality in series EN was 90% Vs 60% in E. Similarly, mortality in series S was 10% Vs 0% in SB. This results confirm that the ammonia increases PL shrimp mortality, and biofilm system reduce ammonia and consequently PL-15 shrimp mortality.


2020 ◽  
Vol 39 (03) ◽  
Author(s):  
THI-HUYEN TRAN ◽  
HOANG-ANH PHAN THI ◽  
LOC TRAN

Early Mortality Syndrome (EMS), also known as Acute Hepatopancreas Necrosis Disease (AHPND) in shrimps, has been identified as being caused by a strain of V. parahaemolyticus. This disease has caused enormous damage to the shrimp farming industry among countries in the world in general and Vietnam in particular. One of the main reasons for uncontrollable widespread disease is the process of identifying pathogens is slow and inaccurate, leading to no promptly preventive measurement. In order to enhance the ability to briefly detect disease and improve the current disease status, in this study the PCR process using two specific 16S rRNA and ldh primers has been developed to swiftly diagnose V. parahaemolyticus pathogen in shrimps with a detection threshold of 3.5x103 CFU/ml


Aquaculture ◽  
2018 ◽  
Vol 493 ◽  
pp. 26-36 ◽  
Author(s):  
Piyachat Sanguanrut ◽  
Natthinee Munkongwongsiri ◽  
Janejit Kongkumnerd ◽  
Jumroensri Thawonsuwan ◽  
Siripong Thitamadee ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 44 ◽  
Author(s):  
Rian Ka Praja

<p class="15" align="justify"><em>Vibrio parahaemolyticus</em> is an aquatic zoonotic agent that can threaten human and aquaculture animal health. Humans can be infected by consuming contaminated raw seafood or wound-related infections. Generally infection of <em>V. parahemolyticus</em> is orally transmitted and causes gastroenteritis in humans while in aquaculture animals especially shrimp can cause Acute Hepatopancreatic Necrosis Disease (AHPND) or Early Mortality Syndrome (EMS) with a very high mortality rate and cause economic losses. Shrimp species susceptible to infection are <em>Litopenaeus vannamei, Penaeus monodon,</em> and <em>P. chinensis</em>. <em>V. parahaemolyticus</em> produces several toxins in human disease such as thermostable direct hemolysin (TDH), TDH-related haemolysin (TRH), and thermolabile hemolysin (TLH). Meanwhile, Photorabdus insect-related (Pir) toxins consisting of PirA<sup>vp</sup> and PirB<sup>vp</sup> are the toxins associated with AHPND in shrimp. The genes that encode the toxin are used as targets to diagnose <em>V. parahaemolyticus</em> pathogens molecularly. Until now the treatment of <em>V. parahaemolyticus</em> infection is using antibiotics and fluid therapy, but there were <em>V. parahaemolyticus</em> isolates from aquaculture that have been resistant to antibiotics so that the use of antibiotics in aquaculture must be controlled and the use of alternative therapy are very important to be developed to control <em>V. parahaemolyticus</em> infection.</p><p class="15" align="justify"> </p><p>Keywords: <em>V. parahaemolyticus</em>, zoonotic, gastroenteritis, Acute Hepatopancreatic Necrosis Disease (AHPND), Early Mortality Syndrome (EMS).</p>


Aquaculture ◽  
2017 ◽  
Vol 476 ◽  
pp. 44-48 ◽  
Author(s):  
Stephanie L. Williams ◽  
Roderick V. Jensen ◽  
David D. Kuhn ◽  
Ann M. Stevens

2020 ◽  
Vol 18 (2) ◽  
pp. 349-362
Author(s):  
Tran Ngoc My Hanh ◽  
Tran Van Nhi ◽  
Nguyen Thi Thu Hoai

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environment. This organism is the major causative agent of Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Disease (AHPND) which resulted in serious damages to cultured shrimp industry. Understanding the effect of environmental factors on the growth and virulence of this potential pathogen would be beneficial for preventing its outbreak. In this study, the growth and virulence of V. parahaemolyticus was examined under different salinity and shaking condition. V. parahaemolyticus XN9 was cultured in Brain Heart Infusion (BHI) medium with different sodium chloride concentrations (2.0, 2.5 and 3.0%) and different shaking conditions (0, 120 and 240 rpm). The growth of the bacterium was recorded over 8h and six extracellular enzymes of V. parahaemolyticus XN9 including caseinase, hemolysin, lecithinase, lipase, gelatinase, chitinase were investigated using agar-based method. The growth of V. parahaemolyticus was varied among different salinity and shaking conditions. It showed the best growth at 2.0% NaCl and 240 rpm. No change in the enzymatic activity (EA) of the tested extracellular enzymes was observed while changing salinity except the significant decline of gelatinase from 3.49±0.19 to 2.77±0.17 mm following salinity increase (p < 0.05). On the other hand, regarding shaking condition, lipase was the one to increase its activity significantly following the increase of shaking speed (p < 0.05). While caseinase, lecithinase, gelatinase and lipase were well expressed in V. parahaemolyticus, no hemolytic and chitinase activity was observed in any tested conditions. In summary, our study showed that 2.0 % NaCl and 240 rpm shaking promoted the best growth of V. parahaemolyticus and resulted in highest activity of gelatinase and lipase in this bacterium.


Sign in / Sign up

Export Citation Format

Share Document