Monitoring of Elastoplastic Fracture Behavior of HSLA Steel Using Acoustic Emission Testing

2021 ◽  
Vol 79 (4) ◽  
pp. 383-390
Author(s):  
Jalaj Kumar ◽  
C K Mukhopadhyay ◽  
Vikas Kumar

The present study explores using acoustic emission testing (AE) to monitor the elastoplastic fracture toughness (JIC) of high-strength, low-alloy (HSLA) steel in two different orientations. Acoustic emission signals generated during the tests were found to be higher during bulk yielding upon initial loading, after which they decreased during intermediate loading before increasing again. The acoustic emission signals generated were used to correlate with the JIC values determined from unloading compliance tests. The point of crack initiation estimated by AE is lower than that determined by the unloading compliance tests. Beyond the point of crack initiation determined by AE, the acoustic emission signals generated increased rapidly, which is attributed to crack growth. The results of AE during crack initiation are supported by the peak amplitude of the acoustic emission signals. The possibility of using AE data to estimate fracture toughness values has also been explored for HSLA steel.

Author(s):  
Jun Jiang ◽  
Rong Yi ◽  
Lili Que

We use acoustic emission technique for the detecting of 1000m3 LPG spherical tank. The overall moitoring and local monitoring, as well as a combination of the two methods are applied. By lowering the threshold value, detection sensitivity is improved. 23 effective acoustic emission sources are discovered, in which 21 crack defects are retest.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2011 ◽  
Vol 105-107 ◽  
pp. 2179-2182
Author(s):  
Wei Min Zhang ◽  
Shu Xuan Liu ◽  
Yong Qiu ◽  
Cheng Feng Chen

Crack propagation is the main reason which leads to the invalidity of the metal components. A set of detecting equipment based on the acoustic emission method was designed, and it was mainly composed of acoustic emission sensor, signal operating circuits and signal acquisition system. Specimens of 16MnR material were manufactured and the static axial tension test of them was carried on. Acoustic emission signals from the specimen were detected by acoustic emission equipment by using piezoelectric ceramic sensor. Signal datum were acquired and operated by the acquisition system, as well as the acquisition program written for it. The final results has demonstrated that acoustic emission equipment designed for the test performed well in acquiring the signals induced by the metal crack propagation.


2006 ◽  
Vol 13-14 ◽  
pp. 195-200
Author(s):  
Athanasios Anastasopoulus ◽  
S. Bousias ◽  
A. Tsimogiannis ◽  
T. Toutountzakis

Acoustic Emission (AE) monitoring was performed during Pseudo-Dynamic Testing of a torsionally unbalanced, two-storey, one-by-one bay reinforced concrete frame structure. The structure represented a 0.7-scale model of a real-size frame structure designed and detailed according to the standards prevailing in Greece in 60's, without engineered earthquake resistance. Real time monitoring of AE activity versus the complex applied load resulted in semi quantitative damage characterization as well as comparative evaluation of the damage evolution of the different size columns. Evolution of the AE energy rate per channel, as revealed from zonal location, and the energy rate of linearly located sources enabled the identification of damage areas and the forecast of crack locations before cracks were visible with naked eye. In addition to that, the results of post processing evaluation allowed for the verification of the witnessed damaged areas and formed the basis for quantitative assessment of damage criticality.


Sign in / Sign up

Export Citation Format

Share Document