scholarly journals Machine Learning Techniques for Diagnosis of Lower Gastrointestinal Cancer: A Systematic Review

Background: Nowadays, it can be seen that changes have taken place in the process of diseases and their clinical parameters. Accordingly, in some cases, general medical science and the use of clinical statistics based on the experiences of the physicians are not enough for the provision of sufficient tools for an early and accurate diagnosis. Therefore, medical science increasingly seeks to use unconventional methods and machine learning techniques. The issue of diagnosis in the medical world and the error rate of physicians in this regard are among the main challenges of the condition of patients and diseases. For this reason, in recent years, artificial intelligence tools have been used to help physicians. However, one of the main problems is that the effectiveness of machine learning tools is not studied much. Due to the sensitivity and high prevalence of diseases, especially gastrointestinal cancer, there is a need for a systematic review to identify methods of machine learning and artificial intelligence and compare their impact on the diagnosis of lower gastrointestinal cancers. Objectives: This systematic review aimed to identify the machine learning methods used for the diagnosis of lower gastrointestinal cancers. Moreover, it aimed to classify the presented methods and compare their effectiveness and evaluation indicators. Methods: This systematic review was conducted using six databases. The systematic literature review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement for systematic reviews. The search strategy consisted of four expressions, namely “machine learning algorithm”, “lower gastrointestinal”, “cancer”, and “diagnosis and screening”, in that order. It should be mentioned that studies based on treatment were excluded from this review. Similarly, studies that presented guidelines, protocols, and instructions were excluded since they only require the focus of clinicians and do not provide progression along an active chain of reasoning. Finally, studies were excluded if they had not undergone a peer-review process. The following aspects were extracted from each article: authors, year, country, machine learning model and algorithm, sample size, the type of data, and the results of the model. The selected studies were classified based on three criteria: 1) machine learning model, 2) cancer type, and 3) effect of machine learning on cancer diagnosis. Results: In total, 44 studies were included in this systematic literature review. The earliest article was published in 2010, and the most recent was from 2019. Among the studies reviewed in this systematic review, one study was performed on the rectum (rectal cancer), one was about the small bowel (small bowel cancer), and 42 studies were on the colon (colon cancer, colorectal cancer, and colonic polyps). In total, 19 out of the 44 (43%) articles from the systematic literature review presented a deep learning model, and 25 (57%) articles used classic machine learning. The models worked mostly on image and all of them were supervised learning models. All studies with deep learning models used Convolutional Neural Network and were published between 2016 and 2019. The studies with classic machine learning models used diverse methods, mostly Support Vector Machine, K-Nearest Neighbors, and Artificial Neural Network. Conclusion: Machine learning methods are suitable tools in the field of cancer diagnosis, especially in cases related to the lower gastrointestinal tract. These methods can not only increase the accuracy of diagnosis and help the doctor to make the right decision, but also help in the early diagnosis of cancer and reduce treatment costs. The methods presented so far have focused more on image data and more than anything else have helped to increase the accuracy of physicians in making the correct diagnosis. Achievement of the right method for early diagnosis requires more accurate data sets and analyses.

2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Bjarne Pfitzner ◽  
Nico Steckhan ◽  
Bert Arnrich

Data privacy is a very important issue. Especially in fields like medicine, it is paramount to abide by the existing privacy regulations to preserve patients’ anonymity. However, data is required for research and training machine learning models that could help gain insight into complex correlations or personalised treatments that may otherwise stay undiscovered. Those models generally scale with the amount of data available, but the current situation often prohibits building large databases across sites. So it would be beneficial to be able to combine similar or related data from different sites all over the world while still preserving data privacy. Federated learning has been proposed as a solution for this, because it relies on the sharing of machine learning models, instead of the raw data itself. That means private data never leaves the site or device it was collected on. Federated learning is an emerging research area, and many domains have been identified for the application of those methods. This systematic literature review provides an extensive look at the concept of and research into federated learning and its applicability for confidential healthcare datasets.


2020 ◽  
Vol 11 (2) ◽  
pp. 49-75
Author(s):  
Amandeep Kaur ◽  
Sandeep Sharma ◽  
Munish Saini

Code clone refers to code snippets that are copied and pasted with or without modifications. In recent years, traditional approaches for clone detection combine with other domains for better detection of a clone. This paper discusses the systematic literature review of machine learning techniques used in code clone detection. This study provides insights into various tools and techniques developed for clone detection by implementing machine learning approaches and how effectively those tools and techniques to identify clones. The authors perform a systematic literature review on studies selected from popular computer science-related digital online databases from January 2004 to January 2020. The software system and datasets used for analyzing tools and techniques are mentioned. A neural network machine learning technique is primarily used for the identification of the clone. Clone detection based on a program dependency graph must be explored in the future because it carries semantic information of code fragments.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 518 ◽  
Author(s):  
Hafsa Khalid ◽  
Muzammil Hussain ◽  
Mohammed A. Al Ghamdi ◽  
Tayyaba Khalid ◽  
Khadija Khalid ◽  
...  

The purpose of this research was to provide a “systematic literature review” of knee bone reports that are obtained by MRI, CT scans, and X-rays by using deep learning and machine learning techniques by comparing different approaches—to perform a comprehensive study on the deep learning and machine learning methodologies to diagnose knee bone diseases by detecting symptoms from X-ray, CT scan, and MRI images. This study will help those researchers who want to conduct research in the knee bone field. A comparative systematic literature review was conducted for the accomplishment of our work. A total of 32 papers were reviewed in this research. Six papers consist of X-rays of knee bone with deep learning methodologies, five papers cover the MRI of knee bone using deep learning approaches, and another five papers cover CT scans of knee bone with deep learning techniques. Another 16 papers cover the machine learning techniques for evaluating CT scans, X-rays, and MRIs of knee bone. This research compares the deep learning methodologies for CT scan, MRI, and X-ray reports on knee bone, comparing the accuracy of each technique, which can be used for future development. In the future, this research will be enhanced by comparing X-ray, CT-scan, and MRI reports of knee bone with information retrieval and big data techniques. The results show that deep learning techniques are best for X-ray, MRI, and CT scan images of the knee bone to diagnose diseases.


2021 ◽  
Vol 10 (2) ◽  
pp. 62
Author(s):  
Vitória Albuquerque ◽  
Miguel Sales Dias ◽  
Fernando Bacao

Cities are moving towards new mobility strategies to tackle smart cities’ challenges such as carbon emission reduction, urban transport multimodality and mitigation of pandemic hazards, emphasising on the implementation of shared modes, such as bike-sharing systems. This paper poses a research question and introduces a corresponding systematic literature review, focusing on machine learning techniques’ contributions applied to bike-sharing systems to improve cities’ mobility. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) method was adopted to identify specific factors that influence bike-sharing systems, resulting in an analysis of 35 papers published between 2015 and 2019, creating an outline for future research. By means of systematic literature review and bibliometric analysis, machine learning algorithms were identified in two groups: classification and prediction.


2021 ◽  
Author(s):  
Jailma Januário da Silva ◽  
Norton Trevisan Roman

In this article, we present a systematic literature review, carried out from February to March 2020, on the application of a machine learning technique to predict student dropout in higher education institutions. Besides describing the protocol followed during our research, which includes the research questions, searched databases and query strings, along with criteria for inclusion and exclusion of articles, we also present our main results, in terms of the attributes used by current research on this theme, along with adopted approaches, specific algorithms, and evalution metrics. The Decision Tree technique is the most used for the construction of models, and accuracy and recall and precision being the most used metric for evaluating models.


Sign in / Sign up

Export Citation Format

Share Document